KU LEUVEN

Trust through replication:
Research challenges in decentralized applications

Tom Van Cutsem
DistriNet, KU Leuven
June 15, 2023

tvcutsem.github.io be.linkedin.com/in/tomvc github.com/tvcutsem twitter.com/tvcutsem @tvcutsem@techhub.social

https://be.linkedin.com/in/tomvc
https://twitter.com/tvcutsem
https://tvcutsem.github.io
https://techhub.social/@tvcutsem
https://github.com/tvcutsem

Trust rooted In
math

10100 X XXX

IHOI0IXXXX

Trust rooted In
hardware

Trust rooted In
consensus

o392
o

IS DistriN=t

Web3: decentralized applications and services

Decentralized. ..

Payments

Sitcoin

Networks Helium

Storage e Filecoin

Computers

—thereum

Decentralized services ...

... operated by multiple iIndependent parties

B DistriN=t

aléz crypto State of Crypto 2023 Why Web3 Matters 8

Web3 counterbalances the trend toward
internet consolidation

3 companies now generate a
third of all global web traffic.

g
HE
=G a0
5 companies represent 50%
of the Nasdaqg 100’s total
market cap, up from 25% a
decade ago.

/E\ j

Blockchains transfer control from centralized
entities to decentralized communities.

‘Blockchains are computers that can make credible commitments”

I DistriN=t

Blockchains are computers that can make “credible commitments”

transactions

&
@ state rﬁachine @
logic

persisterft memory

Many (1000s) untrustworthy physical computers

One sing

with stron

e virtual computer
g trust guarantees

B DistriN=t

Programs that run on blockchain computers are called “smart contracts”™

B DistriN=t

What is a smart contract?

A software program that automatically moves digital assets
according to arbitrary pre-specified rules”

(Vitalik Buterin, Ethereum White Paper, 2014)

8 B DistriN=t

What Is a smart contract?

A program that can recelive, store & send digital assets
A program with its own “bank account”

Essentially, a program that can “own things”

9 IS DistriN=t

SMmart contracts: basic principle

A vending machine is an automaton that can trade physical assets

<::| 1. insert coins
E:> 2. dispense drink + change

10 B DistriN=t

SMmart contracts: basic principle

A smart contract is an automaton that can trade digital assets

11

function approve (address _spendsr, uint256 _value)

returns (kool success) {
allowance [msc.sender] [_spender] = _value;

relurn Lrue;

function approveZndCall (address _spender, uint255 _value, bytes _extraData)
returns (kool success) {
tokenRecipient spender = tokenRecipient (_spender) ;
iZ (approve (_spender, _valu=)) ({
spender. receiveApproval (wsy. sender, value, Lhis, exlraDala);

return true;

function transferFrom(address _from, address _to, uint256 _\:alue) returns (bool success)
iZ (balanceOf[_from] < _value) throw;
il (balanceof[_to] + _value < balanceOf[_Lo]) Lhzow;
i (_value > allowance[_from] [meg.sender]) throw;
balancedf [_from] -= _value;
balancedf[tc] += wvalue;
allowance[_from] [msg.sender] -= _value;
Transfer (_from, _to, _value);

return true;

function () {

throw;

. Insert digital coins (tokens

2. dispense other digital assets

or electronic rights

B DistriN=t

But who should we trust to faithfully execute the automaton’s code?

12

A smart C

ontract is an automaton that can trade digital assets

W

function approve (address _spendsr, uint256 _value)
returns (kool success) {
allowance [msc.sender] [_spender] = _value;

relurn Lrue;

Approve and then comunicate the approved contract in a sing tx
function approveZndCall (address _spender, uint255 _value, bytes _extraData)
returns (kool success) {
tokenRecipient spender = tokenRecipient (_spender) ;
iZ (approve (_spender, _valua)) {
spender. receiveApproval (wsy. sender, value, Lhis, exlraDala);

return true;

function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {
iZ (balanceOf[_from] < _value) throw; t 1

il (balanceOf[_Lo] + _value < balanceOf[_Lo]) Lhrow; Check

i (_value > allowance[_from] [meg.sender]) throw;

balancedf[_from] -= _value:; t

balancedf[tc] += wvalue; Add the same to the recipient
allowance[_from] [msg.sender] -= _value;

Transfer (_from, _to, _value);
return true;

function () {
throw; Prevents accidental sending of ether

. Insert digital coins (tokens

2. dispense other digital assets

or electronic rights

B DistriN=t

Delegate trust to a decentralised network

A smart contract is a replicated automaton that can trade digital assets

13

ilovance [nse sender] [_spender] = _value

Function approverndcall (address _spender, uint255 _value, bytes _extradata)
zeturns (bool success] (

Cokeamesipient spende:

52 (approve (_spender,

spmislas s ivenpproval (g sersier, _valus, Uils, _cxlzaDels

tokermecipient (_spender)

Function tx. a(address _From, address _to, wint256 _value)
12 (balanceut[_szon) < _valae) throw; s

(balarmeof[_to] + _value < balaieol[_tol) Uscom,

£ Cralue

balancedt[_fzom]

balanceof [te]

allovance [_£zon] (nsg. sendex] — _value;
nsfer (_Frem, _to, value);

Tlowance [_Exex] [meq. condex]) hors

fmetion 0 1
throv;

= ool success) |

ns (bool suscess

rove (addzess _spender, uint256 _value)
E [
al1ovance s

der] [_spender] = _value:

function approveandcall (address _spender, ulnt255 _value, bytes _extraDats)
e (o

= (boo1 sucess

okenmectpient (_spendsr) ;
¥ L vt ¢
spmndr rucsvehpprosal (ssy isinr, _valus, Uils, _exteaDetal 1

Eune

_fron, address _to, wint256 _value) recu
value) chrow; i o

fwetion 0
<o

retums (bool success) {

“okenResipiert spen

spmler seievenpprosal (ssy seiier, _value, Uils, cxbseDetal |

(value > xllcwsnoa(_fron] [neg. sendex]] theow

Balancedf [_Ezon)
[———
allovansel_from] [sg. sender]
Transter Frem, _t

famction 0 (
chrov,

(address _spender, uint255 value, bytes _extrabata)

“okenfecipient (_spesder) 1
1 (approve _spender, _valus)) {

(address _from, adéress _to, uint256 _value)
£ (balanceof(_fron] < _value) throx
(adasiwor (0] + _valus < balauceof[_to]) theom; cox

(oo sucsess)

= _value.

famstion 0 (
chron

allovance fmsg. sender) [_spender] = _value;

tokerRecipient (_spender)
_vate))

otvenppruial (ny seies, _value, Uils, _eatzaDatal

(sddoess _fron, adéress _to, wine256
_ralue) ehrow;
+ _valus < balaswmoL[_to]) Uizom

on] (meg. sendex]) throw;

‘ﬁ?‘”o\ 9

Enction

orove (address _spender, uint256 _value)
[q——
allovance fmsc. sender] [_spenier

value:

)

Function approverndcall (address _sperder, uint255 _value, bytes _extraData)
(boo1 success|

tokenResipiert spender = tokenRecipient (_spendsr) ;

52 (spprove _spendex. e

spunlar macsivehpprosal (ssy misiur, _valus, Uils, _cxieaDela) 1

s (bool success)

fmetion 0 ¢
o

_vatus)

replicated code

. Insert digital coins (tokens

2. dispense other digital assets

or electronic rights

B DistriN=t

Research challenges

Securely interacting with blockchain Programming blockchain
computers directly as a user Is hard. computers Is hard and unforgiving.
Can we build better “terminals” to Can we find better, safer ways to
connect to blockchain computers” program blockchain computers”?

14 I DistriN=t

Securely interacting with blockchain Programming blockchain

computers directly as a user is hard. computers is hard and unforgiving.
Can we build better “terminals” to Can we find better, safer ways to
connect to blockchain computers? program blockchain computers”?

15 B DistriN=t

Web3 has a centralization problem

Web?2 middlemen!

s N

=3
* INFURA
I A alchemy
coinbase
] ——
e OpenSed

Browser REST R Rarible
or mobile
(Dapp Ul) Node providers

Crypto exchanges
NFT marketplaces

16

Web3

Blockchains
E)

ng

|

®
L
I
.,

Decentralized data storage

(¥
NN
NN

S

I DistriN=t

Bridging Web3 and Web?2: building better light clients

.

-~ Local client

Vier/fy Fetch root
locally hashes

|

Wallet

Fetch on-chain data

+ merkle proof Blockehain

(Dapp state)
5

e —

| Wl
(> @ E.:/_J _>
~ REST ‘

[:

I
N

p2p U T

Node e D

Browser provider -
(Dapp Ul)

.

17 I DistriN=t

Bridging Web3 and Web?2: building better light clients

18

TABLE I: Overview of light client schemes and implementations

Scheme Consensus | Complexity Compatibility Crypto Primitives Implementations
SPV [5] Any Linear Any
Ethereum 2.0 [21] PoS Linear Fully compatible Merkle proofs Nimbus, Helios, Lodestar
PoPoW [7] PoW Sublinear Modification PoPoW
NIPoPoW [8] PoW Sublinear Modification NIPoPoW Ergo, WebDollar, Nimiq 1.0
FlyClient [9] PoW Sublinear Modification MMR proofs ZCash
PoPoS [12] PoS Sublinear Fully compatible Merkle proofs Kevlar
PoNW [11] PoW O(1) Modification SNARKS
Mina [10] PoS O(1) New System SNARKS Mina
DCert [14] Any O(1) Any Trusted Execution DCert

(W. Wang and T. Van Cutsem, “Don’t Trust, Verify: Empowering Last-
Mile Security and Privacy in Web3 ”. EuroS&P 2023 Poster)

I DistriN=t

Programming blockchain
computers is hard and
unforgiving.

Securely interacting with blockchain
computers directly as a user is hard.

Can we build better “terminals” to

connect to blockchain computers? Can we find better, safer ways to

program blockchain computers?

19 IS DistriN=t

Iwo approaches to program a blockchain computer

“World Computer” vision “Internet of Blockchains” vision

A A
‘

Dapp 1 Dapp 3
Dapp 2

Dapp 3

g

!
®_

ISR

S BT
L

SDK

Programmable “Layer 1”7 chain
o o
gj\j\ ~ Tig E<< - {:) E<<_
Jﬂ@ | QEL J@E
- - BN T
| [“build your own chain’
- P NN - (appchains)
Q ethereum /Klgorand C,@’S MOS ¢ Polkaclot

p
SN SR Eﬁﬁ fiﬁgﬁ
B N— - N Toolkit to easily
S
20 B DistriN=t

Iwo approaches to program a blockchain

“World Computer” vision “Internet of Blockchains™ vision

A A
‘

Dapp 1 Dapp 3
Dapp 2

Dapp 3

g

!
®_

ISR

S BT
L

SDK

Programmable “Layer 1”7 chain
P P
gj\ﬁ‘\ ~ Tig E<< - {:) E?
J@E_J ! QEL J@E
< — s T
| [“build your own chain’
- P NN - (appchains)
Q cethereum /Xlgorand CQ’S MOS ¢ Polkaclot

p
SN SR Eﬁﬁ fiﬁgﬁ
B N— - N Toolkit to easily
S
21 B DistriN=t

Solidity Is by far the most important smart contract language today

TVL = Total value locked in smart contract programs

TVL Dominance 17 Languages v 31 mrt 2023
® Solidity 91.05%

® Vyper 6.91%

® Rust 0.7%

® Cairo 0.49%

® Bitcoin Script 0.24%
Haskell 0.19%
Ride 0.11%
C++ 0.11%

®C# 0.1%
Java 0.04%

Jul Jul

(Source: Defillama, april 2023)
22 L DistriN=t

Solidity has many safety issues that lead to vulnerabillities

Vulnerabilities

Not So Smart Contract
Bad randomness

Denial of Service
Forced Ether Reception
Incorrect Interface
Integer Overflow

Race Condition
Reentrancy

Unchecked External Call
Unprotected Function
Variable Shadowing

Wrong Constructor
Name

Crytic, (2018). Not so smart contracts. https://github.com/crytic/not-so-smart-contracts

23

Description

Contract attempts to get on-chain randomness, which can be manipulated by

users
Attacker stalls contract execution by failing in strategic way

Contracts can be forced to receive Ether

Implementation uses different function signatures than interface
Arithmetic in Solidity (or EVM) is not safe by default

Transactions can be frontrun on the blockchain

Calling external contracts gives them control over execution

Some Solidity operations silently fall

Failure to use function modifier allows attacker to manipulate contract

Local variable name is identical to one in outer scope

Anyone can become owner of contract due to missing constructor

SWC Registry

Smart Contract Weakness Classification and Test Cases

The following table contains an overview of the SWC registry. Each row consists of an SWC identifier (ID), weakness title, CWE parent and list of
related code samples. The links in the ID and Test Cases columns link to the respective SWC definition. Links in the Relationships column link to

the CWE Base or Class type.
ID Title Relationships Test cases
SWC-136 Unencrypted Private CWE-767: Access to Critical Private » odd_even.sal
Data On-Chain Variable via Public Method + odd_even_fixed.sol
SWC-135 Code With No Effects CWE-1164: Irrelevant Code » deposit_box.sol

» deposit_box_fixed.sol
» wallet.sol

o wallet_fixed.sol

SWC-134 Message call with
hardcoded gas amount

CWE-655: Improper Initialization » hardcoded_gas_limits.sol

SWC-133 Hash Collisions With CWE-294: Authentication Bypass by » access_control.sol
Multiple Variable Length Capture-replay
Arguments

¢ access_control_fixed_1.sol

» access_control_fixed_2.sol

Smart Contract Weakness Classification https://swcregistry.io/

= DistriN=t

https://github.com/crytic/not-so-smart-contracts
https://swcregistry.io/

Can we design safer smart contract languages?

24

69

CHAPTER 3

The Next 700
Smart Contract Languages

Ilya Sergey, Yale-NUS College and National University of Singapore, Singapore

3.1 INTRODUCTION

Smart contracts are a mechanism for expressing replicated computations powered by a decentralized
consensus protocol [Szabo 1994]. They are most commonly used to define custom logic for trans-
actions operating over a blockchain—that is, a decentralized Byzantine-fault-tolerant distributed
ledger [Bano et al. 2019, Pirlea and Sergey 2018]. In addition to a typical state of computations, a
blockchain stores a mapping from accounts (public keys or addresses) to quantities of zokens owned by
said accounts. Execution of an arbitrary program (aka a smart contract) is done by miners, who run
the computations and maintain the distributed ledger in exchange for a combination of gas (transac-
tion fees based on the execution length, denominated in the intrinsic tokens and paid by the account
calling the smart contract) and &/ock rewards (inflationary issuance of fresh tokens by the underly-
ing protocol). One distinguishing property of smart contracts, not found in standard computational

settinﬁs, is the manaﬁement of token transfers between accounts. While simﬁle forms of smart con-

llya Sergey, “The Next 700 Smart Contract Languages”

in Principles of Blockchain Systems, 2021

Expressivity Execution Speed

Figure 1.1: Language Design Trade-off. The dashed line shows EVM'’s design choices.

= DistriN=t

HOW you represent digital assets in smart contract code matters

s Solidity: assets are integers @ Move: assets are “resource types”

solidity

module crowdfunding {

contract Crowdfundin
5 ‘{ struct Deposit<phantom CoinType> has key {

address public owner; coin: Coin<CoinType>,

uint256 public deadline; }

uint256 public goal; public entry fun donate<CoinType>(account: &signer, fund addr: address,

mapping (addr‘ess =S uint256) public backers; amount: u64) acquires Deposit, CrowdFunding {

let coin_to deposit = coin::withdraw<CoinType>(account, amount);

function donate() public payable { let cf = borrow_global mut<CrowdFunding<CoinType>>(fund_addr);
require(block.timestamp < deadline);
backers[msg.sender] += msg.value; if (!exists<Depo§it<CoinTy|?e>>(éddr')) { . | |

} let to_deposit = Deposit<CoinType> {coin: coin_to deposit};

move_to(account, to deposit);
let backers = &mut cf.backers;
h vector: :push_back<address>(backers, addr);
} } else {
let deposit = borrow_global mut<Deposit<CoinType>>(addr);
coin: :merge<CoinType>(&mut deposit.coin, coin_to deposit);

25 } B DistriN=t

Safer smart contract languages. Example: Move

26

%

solidity

Vulnerability Class | # Vuln researched Move Solidity 0.8+
Overflow/ Underflow 12 12 12
Access control 15 8 2
Constructor naming 5 5 4
Control flow 7 7 0

Logic error 17 6 1
Wrong interface 8 8 0

Total 64 46 (72%) 19 (30%)

(S. Selleri, “Smart contract safety: A comparative study between
Solidity and Move smart contract languages”. Masters’ thesis. 2023)

= DistriN=t

Iwo approaches to program a blockchain

27

‘

Dapp 1

“World Computer” vision

‘

‘

Dapp 3

Dapp 2

Programmable “Layer 1”7 chain

(—>
B —

[

N

)
—

-

.

N |

_&

-

e

B8

A

Q cthereum /Xlgorand

g

!
®B_

IE_) N
[

Toolkit to easily
“build your own chain”
(@ppchains)

NNNNNNNNNNNNNNNNNNNNN

{_3 Polkadot

“Internet of Blockchains” vision

Dapp 3

g

!
®_

ISR

S BT
L

SDK

I DistriN=t

28

Client

RPC |

<€

Application logic ¢ modules

KVStore.Get
KVStore.Set

+ 1 Application

Info
InitChain

BeginBlock
Query

DeliverTx
EndBlock

Commit

B Consensus logic

endermint Core -

IS DistriN=t

Vulnerabllities in Cosmos code

Vulnerabilities

Not So Smart Contract Description

neort Non-determinism

Non-i
' Non-determinism in conensus-relevant code will cause the blockchain to halt. There are quite a few sources of nhon-determinism, some of

Not p which are specific to the Go language:

lowiis
BRRR L
SO A PRt
s pie 3l D SN
gn- -

= range iterations over an unordered map or other operations involving unordered structures
ABCI

e Implementation (platform) dependent types like int or filepath.Ext
| e goroutines and select statement
Broke
{ o Memory addresses

Rounj Floating point arithmetic operations

Unre¢ * Randomness (may be problematic even with a constant seed)

Local time and timezones

Missi|
e Packages like unsafe, reflect,and runtime
_

(Source: Crytic)

29 I DistriN=t

https://github.com/crytic/building-secure-contracts/tree/master/not-so-smart-contracts/cosmos

Map iteration order in Go iIs non-deterministic

func main() {
m := make (map[stringlint32)
m["one"] =1
m["two"] = 2
m["three"] = 3

arr := [lint{}

for key, value := range m {
append(arr, value)

}

// The order of values in arr is non—deterministic

30 B DistriN=t

Blockchain computers don't like non-deterministic execution

31

@® THORChain > € THORNode > Issues > #1169

[V Closed () Issue created 1year ago by ‘ Aquila (9R) Owner

[INCIDENT REVIEW] Maps Are Evil

Maps Are Evil Incident Review

Summary

On Friday Nov 12, THORChain reached a consensus failure due to an iteration over a map error-ing at different indexes. This cause the
chain to halt. After a few initial approaches, the full resync method was chosen. Consensus was restored on Nov 17.

After the network was restored, there was a secondary issue when trading was resumed before all the node's bifrosts had reached
the tip of each chain. This caused some nodes to receive slash points for not observing transactions. Trading was halted on these
chains until they caught up.

Follow-up list is at the bottom, please feel free to suggest other follow ups in the comments or file issues directly.

Timeline

Friday Nov 12 (All times GMT)

14:35: Last consensus block: 2943996 https://thornode.thorchain.info/blocks/2943996

14:47: Initial Report: https://discord.com/channels/838986635756044328/839002619481554955/908729819552956467
16:41: Root cause udpate: https://discord.com/channels/838986635756044328/839002619481554955/908758512736276490

16:50: Initial PR: 11995 (merged)

B DistriN=t

Studying potential vulnerabllities in Cosmos code in the wild

Curated corpus of 11 representative Cosmos projects:

(J. Surmont, “Static Application Security Testing in Application-specific

32

Open Source

Built with Cosmos SDK

Mix of application use cases

Mix of recent and mature projects

Mix of large, medium, small market caps

Blockchains: a case study of Cosmos”. Masters’ thesis. 2023)

Name Use case Date Total Tx F# Func

Stridel A liquid staking plat- 4 Sept. 2022 546,690 209
form.

Osmosis? The largest interchain de- 16 June 2021 607,470 1310

Cosmos Hub?
(Gaia)

Axelar?
Crypto.org®
Fetch.ai®
Regen”’

Jackal®
Medibloc?

Desmos!?

Digll

centralized exchange.

The economic center of
Cosmos providing IBC se-
curity and more.

Web3 integration across
multiple chains

Payment, DeFi and
NFTs.

Automation of Web3 sys-
tems using Al agents.

Originate and invest in
ecological regeneration
projects.

Cloud storage solution.

Patient-centered health
data ecosystem.

Framework to build so-
cial media platforms.

Tokenized real-estate.

13 Aug. 2019

8 Mar. 2021

14 Oct. 2020

1 July 2020

5 June 2019

22 Oct. 2022

26 Aug 2019

10 Dec. 2019

13 Dec. 2021

289,710 6

2,944,100 2965

167,040 92
264,000 2

0 444
0 257
14,101 513
3,202 758
1,370 2

I DistriN=t

v @ Perform CodeQL Analysis

tHub

» Run github/codeql-action/analyze@vl

/opt/hostedtoolcache/(:odeouo.o.0—20220214/:60/(00«:\/:00«! version ~~format=terse
2:8:1

» Extracting javascript

» Finalizing javascript

» Running queries for javascript

» Interpreting results for javascript

Analysis produced the following diagnostic data:

| Diagnostic | Susmary i
e ————————
| Extraction errors 1 © results |
| Successfully extracted files | 20 results |
Analysis produced the following metric data:

| metric 1 Yol |
@ o e e e . D A A S U D G W W - e e e e e e me e e e e @ e e e .
| Total Lines of JavaScript and TypeScript code in the Sataane 1 87)
| Total Lines of user written JavaScriot and Typecriptl cole ia The A0t | -

/opt/hostedtoolcache/CodeOL/0.0.0-200 20014704/ codeq L /eyt S0t alate 7 A0 -G | e
/home/ runner/work/ _tenp/codeql_databases/ javancr ipt

4 . . aan - TOE—

| dentifying potential vulnerabilities using the CodeQL SAST tool

Statically detect 8 potential sources of non-determinism in “consensus-
critical code” of Go applications that use Cosmos ABCI

Refactored / new queries Positives UTP Noise Ratio Precision

1. {Begin,End}Block panic 91 91 0% 100%

2. Map iteration 13 5) 0% 38%
3. Hardcoded Bech32 0 0 N/A N/A

4. Goroutines 0 0 N/A N/A

5. Floating point 2 0 N/A 0%

6. Local time 0 0 N/A N/A

7. Unsafe packages 5 4 0% 80%

8. Platform dependent types 44 35 0% 79.54%

(J. Surmont, “Static Application Security Testing in Application-specific
Blockchains: a case study of Cosmos”. Masters’ thesis. 2023)

34 I DistriN=t

35

+Trust through replication: blockchains are trustworthy computers
- “World Computer” versus “Internet of Blockchains” execution model

- Can we build better “terminals” to connect to blockchain computers”?

Build light client-friendly blockchains

- Can we find better, safer ways to program blockchain computers”?

Better language design for blockchain-specific languages

Better analysis tools t0 "tame” general-purpose languages for blockchain

IS DistriN=t

