
Trust through replication: 
Research challenges in decentralized applications

Tom Van Cutsem

DistriNet, KU Leuven 
June 15, 2023

twitter.com/tvcutsemgithub.com/tvcutsemtvcutsem.github.io be.linkedin.com/in/tomvc @tvcutsem@techhub.social

https://be.linkedin.com/in/tomvc
https://twitter.com/tvcutsem
https://tvcutsem.github.io
https://techhub.social/@tvcutsem
https://github.com/tvcutsem

Trust through replication?

2

Trust rooted in
consensus

Trust rooted in
hardware

Trust rooted in
math

Web3: decentralized applications and services

3

… operated by multiple independent parties

Decentralized services …

Filecoin

ENS

Bitcoin

Civic

Decentralized…

Names

Identity

Storage

Payments

…

Networks Helium

EthereumComputers

Web3

4

a16z crypto  2023 State of Crypto 

Web3 counterbalances the trend toward  
internet consolidation  

8 Why Web3 Matters 

5 companies represent 50%
of the Nasdaq 100’s total
market cap, up from 25% a
decade ago. 

Blockchains transfer control from centralized
entities to decentralized communities.

3 companies now generate a
third of all global web traffic. 

Source: CapIQ, SimilarWeb. 

Big Tech  web3 

“Blockchains are computers that can make credible commitments”

Blockchains are computers that can make “credible commitments”

6

T0

S0 S1

T1

S2

state machine

logic

consensus

T0

S0 S1

Many (1000s) untrustworthy physical computers

One single virtual computer 
with strong trust guarantees

transactions

persistent memory

state

Programs that run on blockchain computers are called “smart contracts”

What is a smart contract?

8

“A software program that automatically moves digital assets
according to arbitrary pre-specified rules”

(Vitalik Buterin, Ethereum White Paper, 2014)

What is a smart contract?

9

A program that can receive, store & send digital assets

A program with its own “bank account”

Essentially, a program that can “own things”

Smart contracts: basic principle

• A vending machine is an automaton that can trade physical assets

10

1. insert coins

2. dispense drink + change

Smart contracts: basic principle

• A smart contract is an automaton that can trade digital assets

11

1. insert digital coins (tokens)

2. dispense other digital assets 
or electronic rights

code

But who should we trust to faithfully execute the automaton’s code?

• A smart contract is an automaton that can trade digital assets

12

1. insert digital coins (tokens)

2. dispense other digital assets 
or electronic rights

code

Delegate trust to a decentralised network

• A smart contract is a replicated automaton that can trade digital assets

13

1. insert digital coins (tokens)

2. dispense other digital assets 
or electronic rights

replicated code

Research challenges

14

Securely interacting with blockchain 
computers directly as a user is hard. 

Can we build better “terminals” to 
connect to blockchain computers?

Programming blockchain
computers is hard and unforgiving.

Can we find better, safer ways to
program blockchain computers?

Research challenges

15

Securely interacting with blockchain 
computers directly as a user is hard. 

Can we build better “terminals” to 
connect to blockchain computers?

Programming blockchain
computers is hard and unforgiving.

Can we find better, safer ways to
program blockchain computers?

Web3 has a centralization problem

16

RESTBrowser 
or mobile 
(Dapp UI)

Wallet

Node providers

Web2 middlemen!

NFT marketplaces

Crypto exchanges

…

Blockchains

p2p

Web3

Decentralized data storage

Bridging Web3 and Web2: building better light clients

17

Blockchain 
(Dapp state)

Browser 
(Dapp UI)

Node 
provider

p2pREST

Wallet

Local client

Fetch on-chain data
+ merkle proof

Fetch root
hashes 
0x…

Verify
locally

Bridging Web3 and Web2: building better light clients

18

(W. Wang and T. Van Cutsem, “Don’t Trust, Verify: Empowering Last-
Mile Security and Privacy in Web3 ”. EuroS&P 2023 Poster)

Research challenges

19

Securely interacting with blockchain 
computers directly as a user is hard. 

Can we build better “terminals” to 
connect to blockchain computers?

Programming blockchain
computers is hard and

unforgiving.

Can we find better, safer ways to
program blockchain computers?

Two approaches to program a blockchain computer

20

VM

SDK

Dapp 1
Dapp 2

Dapp 3

Programmable “Layer 1” chain

Toolkit to easily 
“build your own chain” 

(appchains)

Dapp 1

SDK

Dapp 2

SDK

Dapp 3

“Internet of Blockchains” vision“World Computer” vision

Two approaches to program a blockchain

21

VM

SDK

Dapp 1
Dapp 2

Dapp 3

Programmable “Layer 1” chain

Toolkit to easily 
“build your own chain” 

(appchains)

Dapp 1

SDK

Dapp 2

SDK

Dapp 3

“Internet of Blockchains” vision“World Computer” vision

Solidity is by far the most important smart contract language today

22
(Source: Defillama, april 2023)

TVL = Total value locked in smart contract programs

Solidity has many safety issues that lead to vulnerabilities

23

Crytic, (2018). Not so smart contracts. https://github.com/crytic/not-so-smart-contracts

Smart Contract Weakness Classification https://swcregistry.io/

https://github.com/crytic/not-so-smart-contracts
https://swcregistry.io/

Can we design safer smart contract languages?

24

Ilya Sergey, “The Next 700 Smart Contract Languages” 
in Principles of Blockchain Systems, 2021

How you represent digital assets in smart contract code matters

25

contract	Crowdfunding	{

				address	public	owner; 
				uint256	public	deadline; 
				uint256	public	goal; 
				mapping	(address	=>	uint256)	public	backers;

 
				function	donate()	public	payable	{ 
								require(block.timestamp	<	deadline); 
								backers[msg.sender]	+=	msg.value;	 
				}

				… 
}	

module	crowdfunding	{ 
 
		struct	Deposit<phantom	CoinType>	has	key	{ 
				coin:	Coin<CoinType>, 
		}

		public	entry	fun	donate<CoinType>(account:	&signer,	fund_addr:	address, 
																																				amount:	u64)	acquires	Deposit,	CrowdFunding	{	 
						…		

						let	coin_to_deposit	=	coin::withdraw<CoinType>(account,	amount); 
						let	cf	=	borrow_global_mut<CrowdFunding<CoinType>>(fund_addr);	 
 
						if	(!exists<Deposit<CoinType>>(addr))	{ 
										let	to_deposit	=	Deposit<CoinType>	{coin:	coin_to_deposit}; 
										move_to(account,	to_deposit); 
										let	backers	=	&mut	cf.backers; 
										vector::push_back<address>(backers,	addr); 
						}	else	{ 
									let	deposit	=	borrow_global_mut<Deposit<CoinType>>(addr);	 
									coin::merge<CoinType>(&mut	deposit.coin,	coin_to_deposit); 
						}

						… 
		}

		…

}

Move: assets are “resource types”Solidity: assets are integers

Safer smart contract languages. Example: Move

26

(S. Selleri, “Smart contract safety: A comparative study between
Solidity and Move smart contract languages”. Masters’ thesis. 2023)

Two approaches to program a blockchain

27

VM

SDK

Dapp 1
Dapp 2

Dapp 3

Programmable “Layer 1” chain

Toolkit to easily 
“build your own chain” 

(appchains)

Dapp 1

SDK

Dapp 2

SDK

Dapp 3

“Internet of Blockchains” vision“World Computer” vision

Cosmos SDK and ABCI

28

Application logic

Consensus logic

ABCI interface

Query

Info
InitChain
BeginBlock
DeliverTx
EndBlock
Commit

KVStore.Get
KVStore.Set

RPC

Application

Tendermint Core

modules

Client

Vulnerabilities in Cosmos code

29

(Source: Crytic)

https://github.com/crytic/building-secure-contracts/tree/master/not-so-smart-contracts/cosmos

Map iteration order in Go is non-deterministic

30

Blockchain computers don’t like non-deterministic execution

31

Studying potential vulnerabilities in Cosmos code in the wild

32

(J. Surmont, “Static Application Security Testing in Application-specific
Blockchains: a case study of Cosmos”. Masters’ thesis. 2023)

Curated corpus of 11 representative Cosmos projects:

• Open Source

• Built with Cosmos SDK

• Mix of application use cases

• Mix of recent and mature projects

• Mix of large, medium, small market caps

Identifying potential vulnerabilities using the CodeQL SAST tool

34

Statically detect 8 potential sources of non-determinism in “consensus-
critical code” of Go applications that use Cosmos ABCI

(J. Surmont, “Static Application Security Testing in Application-specific
Blockchains: a case study of Cosmos”. Masters’ thesis. 2023)

Summary

• Trust through replication: blockchains are trustworthy computers

• “World Computer” versus “Internet of Blockchains” execution model

• Can we build better “terminals” to connect to blockchain computers?

• Build light client-friendly blockchains

• Can we find better, safer ways to program blockchain computers?

• Better language design for blockchain-specific languages

• Better analysis tools to “tame” general-purpose languages for blockchain

35

