
Capability-based financial instruments

or: object-capabilities meet smart contracts

Tom Van Cutsem

DistriNet, KU Leuven 
IFIP WG2.16 meeting, March 2024

twitter.com/tvcutsemgithub.com/tvcutsemtvcutsem.github.io be.linkedin.com/in/tomvc @tvcutsem@techhub.social

https://twitter.com/tvcutsem
https://techhub.social/@tvcutsem
https://github.com/tvcutsem
https://tvcutsem.github.io
https://be.linkedin.com/in/tomvc

Blockchains as computers that can make “credible commitments”

2

T0

S0 S1

T1

S2

smart contract

consensus

T0

S0 S1

Many (1000s) untrustworthy physical computers

One single virtual computer 
with strong trust guarantees

Today’s talk

• Access control of “electronic rights” (aka digital assets) in smart contracts

• Object-capabilities: an access control system hidden within the lambda
calculus

• How to represent electronic rights using object-capabilities? The Electronic
Rights Transfer Protocol (ERTP)

• Documenting common code patterns in ERTP-based contracts

• An ocap-safe subset of JavaScript: “Hardened JavaScript”

3

• Confidentiality (a.k.a. Secrecy): No one can infer information they are
not supposed to know. Confidentiality usually rests on cryptography
to keep information secret.

• Example violation: “Bob learns how much money Alice has in her
bank account”

• Example threat: side channel attack.

• Integrity (a.k.a. Safety): No “bad” things happen. Integrity usually rests
on access control determining what agents can cause what effects.

• Example violation: “Bob steals Alice’s money”

• Example threat: confused deputy attack.

• Availability (a.k.a. Liveness): “Good” things continue to happen.

• Example violation: “Bob prevents Alice from spending her money
as she wants”

• Example threat: a denial of service attack.

The CIA triad from an application security perspective

4

(Source: Miller, “A Taxonomy of Security Issues”, 2021, https://agoric.com/blog/technology/a-taxonomy-of-security-issues)

(Image source: Nikander, Jussi & Manninen, Onni & Laajalahti, Mikko. (2020). Requirements for cybersecurity in
agricultural communication networks. Computers and Electronics in Agriculture.)

https://agoric.com/blog/technology/a-taxonomy-of-security-issues

• Confidentiality (a.k.a. Secrecy): No one can infer information they are
not supposed to know. Confidentiality usually rests on cryptography
to keep information secret.

• Example violation: “Bob learns how much money Alice has in her
bank account”

• Example threat: side channel attack.

• Integrity (a.k.a. Safety): No “bad” things happen. Integrity usually rests
on access control determining what agents can cause what effects.

• Example violation: “Bob steals Alice’s money”

• Example threat: confused deputy attack.

• Availability (a.k.a. Liveness): “Good” things continue to happen.

• Example violation: “Bob prevents Alice from spending her money
as she wants”

• Example threat: a denial of service attack.

The CIA triad from an application security perspective

5

(Source: Miller, “A Taxonomy of Security Issues”, 2021, https://agoric.com/blog/technology/a-taxonomy-of-security-issues)

(Image source: Nikander, Jussi & Manninen, Onni & Laajalahti, Mikko. (2020). Requirements for cybersecurity in
agricultural communication networks. Computers and Electronics in Agriculture.)

Our focus

https://agoric.com/blog/technology/a-taxonomy-of-security-issues

Access control: two alternative views

6

Access control lists (ACLs) Capabilities (caps)
Access control organised 

around identity.
Access control organised around 
specific acts of authorization.

(source: Miller et al. “Capability myths demolished”, 2003)

Capability systems excel at delegating authority

7

Granovetter Diagram

A capability both designates a
resource and authorises some
kind of access to it.

The two are inseparable.

Naming and authority are
bundled.

(source: Miller et al. “Capability myths demolished”, 2003)

“Only connectivity begets connectivity”

Three simple rules that describe how authority is acquired in an object-capability system:

8

// alice executes:
let carol = makeCarol()Creation: e.g. alice creates carol herself

// alice executes:
bob.foo(carol)Transfer: e.g. alice transfers carol to bob

// alice’s constructor:
function makeAlice(carol) {…}

Endowment: e.g. at creation, alice is
endowed with authority to access carol

• In a memory-safe programming language, an object-capability is simply an unforgeable
reference (a pointer) to an object (or a function)

• The designated resource = the object being pointed to

• Exercising authority = invoking one of the designated object’s public methods

What are object-capabilities?

9

a method callan object another object

// alice executes:
file.read()

file

(source: Miller et al. “Capability myths demolished”, 2003)

an object reference 
(aka “a pointer”)

When is a language an object-capability language?

1. The language must be memory-safe: object pointers are unforgeable

• Cannot typecast an int to a pointer, cannot randomly access heap memory, …

2. The language must offer strong encapsulation

• Objects need a way to privately store pointers to other objects

3. The language must not provide access to undeniable (ambient) authority

• Examples of undeniable authority: the ability to import arbitrary modules, the ability to
access or update mutable global variables

4. The only way to delegate authority is by sharing a pointer to an object

• “Only connectivity begets connectivity”

10

From object-capabilities to “electronic rights”

• An object-capability is a kind of “right”:

• A bearer instrument: whoever holds it can use it

• Properties: Non-exclusive, non-fungible, exercisable, non-assayable

• Starting from only object-capabilities, can we build other kinds of “rights”?

• Example: e-money.

• Properties: Exclusive, fungible, non-exercisable, assayable

11

2000s: Capability-based “financial instruments”

12

(Miller et al., Financial Cryptography 2000)Simple e-money protocol 
in 25 lines of E code

2010s: Distributed Resilient Secure ECMAScript (Dr. SES)

13

Asset
Issuer

$ Issuer

Alice Bob

Escrow Exchange

Agent

2PC

Transaction

Coordinator

Secure escrow exchange protocol 
in 42 lines of JavaScript

(Miller et al., European Symposium on Programming, 2013)

2020s: The Agoric stack: writing smart contracts in JavaScript

14

written in 
Hardened JavaScript

Digital assets or “erights” 
managed by 

Zoe framework

executing on 
a blockchain 

(Tendermint / Cosmos)

ERTP: the Electronic Rights Transfer Protocol

• In ERTP, digital assets or “rights” are
represented as object-capabilities

• Access to a mint object → authority to
mint new assets of a given brand

• Access to a payment object and a purse
object of the same brand → authority to
spend (transfer) the asset

• Access to an invitation object →
authority to participate in a contract

15

Zoe and ERTP: patterns

• Security of assets now hinges on the reachability of object-capabilities

• Must carefully reason about (transitive) reachability

• Patterns help facilitate this reasoning (elevate the level of abstraction)
16

(source: Agoric)

https://fravoll.github.io/solidity-patterns/

https://fravoll.github.io/solidity-patterns/

https://ilyasmercan.github.io/AgoricPatterns/

https://ilyasmercan.github.io/AgoricPatterns/

Mining patterns

• Trade patterns: patterns of arranging invitations and seats
within a Zoe contract

• Code patterns: patterns of arranging interactions among
objects in Hardened JavaScript

• Why? Establish a pattern language. Elevate levels of
abstraction. Document best-practices.

• Provide insight into how to manage authority over digital
assets using object-capabilities

• Pattern repository made available on GitHub (PRs welcome)

19

Mined corpus: 10 idiomatic Agoric smart contracts

20

Contracts x Code patterns

21

Identified code patterns

• Make modules powerless by default → requires Compartments

• Make all interface objects transitively immutable → requires hardening

• Make all interactions with untrusted parties asynchronous (similar to the
checks-effects-interaction pattern in Solidity) → requires eventual send

• Verify the authenticity of received objects: establish the authenticity via a
separate path to a trusted issuer (“brands check”) → requires sealer/
unsealer pairs

• Design least authority interfaces → partition authority using facets

22

Turning JavaScript into an ocap-safe language:

“Hardened JavaScript”

Key idea: code running in
hardened JS can only affect
the outside world through
objects (capabilities) explicitly
granted to it from outside.

Hardened JavaScript is a secure subset of standard JavaScript

(inspired by the diagram at https://github.com/Agoric/Jessie)

Full JavaScript

Strict-mode JavaScript

Hardened JavaScript

JSON

• no mutable primordials

• no powerful global objects by default

• can create Compartments

24

https://github.com/Agoric/Jessie

 Each Compartment has its own global object but shared (immutable) primordials.

Isolating modules using Compartments

Host environment

Compartment Compartment

Array

globalThis

Array

globalThis globalThis
Primordials*Math

Objects

Deep-frozen 
Primordials

Deep-frozen 
Objects

MathRealm Realm

25
* Primordials: built-in objects like Object, Object.prototype, Array, Function, Math, JSON, etc.

Example: apply POLA to a basic shared log

We would like Alice to only write to the log, and Bob to only read from the log.

Assume each module is loaded in a separate Compartment (see: LavaMoat)

26

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return Object.freeze({read, write});
}

let log = makeLog();
alice(log.write);
bob(log.read);

JS app
Alice Bob

write read𝑓𝑓

Example: apply POLA to a basic shared log

We would like Alice to only write to the log, and Bob to only read from the log.

Assume each module is loaded in a separate Compartment (see: LavaMoat)

27

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return Object.freeze({read, write});
}

let log = makeLog();
alice(log.write);
bob(log.read);

JS app
Alice Bob

write read𝑓𝑓

// Bob can still modify the function object itself
read.apply = function() { “gotcha” };

Example: apply POLA to a basic shared log

Hardened JavaScript provides a harden function that “deep-freezes” an object
(recurse through properties and the prototype chain)

28

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read: read, write: write});
}

let log = makeLog();
alice(log.write);
bob(log.read);

JS app
Alice Bob

write read𝑓𝑓

// Bob can still modify the function object itself
read.apply = function() { “gotcha” };

Hardening is critical to achieve “defensive consistency”

• “Defensive consistency” (a.k.a. “Robust Safety” [Swasey et al., 2017]): a service should
retain its functional correctness (i.e. internal invariants and post-conditions) towards well-behaved
clients in the presence of adversarial clients (who may exhibit arbitrary behaviour)

• The harden function visits every value in the transitive closure over all own properties and over the
prototype chain and ensures the value is either frozen or “powerless” (e.g. a primitive value)

• Clients are no longer able to tamper with the API surface of the object graph rooted in the
hardened object. Clients can only read properties and call functions.

• A hardened service does not imply immutability or purity! Hardened functions may close over
mutable state (this includes the get/set functions of accessor properties).

• Hardening a service is a necessary but not always a sufficient step to create defensively
consistent services in JavaScript

29

Is JavaScript an object-capability language?

1. The language must be memory-safe: object pointers are unforgeable

✓ Yes, all correct JavaScript VM implementations provide this guarantee

2. The language must offer strong encapsulation

✓ Yes, by hiding variables through lexical scope (also, private fields)

3. The language must not provide access to undeniable (ambient) authority

✓ Yes, when using Hardened JavaScript to load each module in its own Compartment

4. The only way to delegate authority is by sharing a pointer to an object

✓ Yes, if modules export only hardened objects (no mutable global variables)

30

What if Alice and Bob need more authority?
JS app

Alice Bob

write read𝑓𝑓

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
alice(log.write);
bob(log.read);

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 function size() { return messages.length(); }
 return harden({read, write, size});
}

let log = makeLog();
alice(log.write, log.size);
bob(log.read, log.size);

size
𝑓

31

If over time we want to expose more functionality to Alice and
Bob, we need to refactor all of our code.

Expose distinct authorities through facets
JS app

Alice Bob

writer reader

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 function size() { return messages.length(); }
 return harden({
 reader: {read, size},
 writer: {write, size}
 });
}

let log = makeLog();
alice(log.writer);
bob(log.reader);

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 function size() { return messages.length(); }
 return harden({read, write, size});
}

let log = makeLog();
alice(log.write, log.size);
bob(log.read, log.size);

32

Separate powerful authority across several distinct
interfaces through nested objects called facets

Another exercise in POLA

•Bob wants to know if the messages Alice has logged were previously authorized by Carol

•Bob trusts Carol (to authorize messages), but he does not trust Alice

33

import * as alice from "alice.js";
import * as bob from “bob.js";
import * as carol from “carol.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();

alice(log.write);
bob(log.read, carol.auth);
carol(alice);

JS app
Alice Carol Bob

𝑓write

logger

𝑓 read

auth

Another exercise in POLA

34

JS app
Alice Carol Bob

𝑓write

logger

𝑓 read

auth

// in carol.js
function makeCarol(logger) {
 let [seal, unseal] = makeSealerUnsealerPair();
 let stamped = new WeakMap();
 function authorizeAndLog(msg) {
 let stamp = seal(msg);
 stamped.set(stamp, msg);
 logger.write({…msg, stamp});
 }
 function auth(msg) {
 return stamped.get(unseal(msg.stamp)) == msg;
 }
 return harden({authorizeAndLog, auth});
}

// in bob.js
function makeBob(read, auth) {
 …
 let msgs = read(); // untrusted
 let authorized = msgs.filter(msg => auth(msg));
 …
}

This is called “rights amplification”. It’s a useful POLA building block.

•Only code that has access to both the unseal function and the mapping can authorize

35

// in carol.js
function makeCarol(logger) {
 let [seal, unseal] = makeSealerUnsealerPair();
 let stamped = new WeakMap();
 function authorizeAndLog(msg) {
 let stamp = seal(msg);
 stamped.set(stamp, msg);
 logger.write({…msg, stamp});
 }
 function auth(msg) {
 return stamped.get(unseal(msg.stamp)) == msg;
 }
 return harden({authorizeAndLog, auth});
}

// in bob.js
function makeBob(read, auth) {
 …
 let msgs = read(); // untrusted
 let authorized = msgs.filter(msg => auth(msg));
 …
}

JS app
Alice Carol Bob

𝑓write

logger

𝑓 read

auth

Code patterns in HardenedJS smart contracts: recap

• Make modules powerless by default → requires Compartments

• Make all interface objects transitively immutable → requires hardening

• Make all interactions with untrusted parties asynchronous (similar to the
checks-effects-interaction pattern in Solidity) → requires eventual sending

• Verify the authenticity of received objects: establish the authenticity via a
separate path to a trusted issuer (“brands check”) → requires sealer/
unsealer pairs

• Design least authority interfaces → partition authority using facets

36

Capability-based financial instruments

or: object-capabilities meet smart contracts

Tom Van Cutsem

DistriNet, KU Leuven 
March 2024

twitter.com/tvcutsemgithub.com/tvcutsemtvcutsem.github.io be.linkedin.com/in/tomvc @tvcutsem@techhub.social

Questions?

https://techhub.social/@tvcutsem
https://tvcutsem.github.io
https://be.linkedin.com/in/tomvc
https://twitter.com/tvcutsem
https://github.com/tvcutsem

