KU LEUVEN

Capabillity-based financial instruments
or: object-capabilities meet smart contracts

Tom Van Cutsem
DistriNet, KU Leuven
IFIP WG2.16 meeting, March 2024

tvcutsem.github.io be.linkedin.com/in/tomvc github.com/tvcutsem twitter.com/tvcutsem @tvcutsem@techhub.social

https://twitter.com/tvcutsem
https://techhub.social/@tvcutsem
https://github.com/tvcutsem
https://tvcutsem.github.io
https://be.linkedin.com/in/tomvc

Blockchains as computers that can make “credible commitments”

One single virtual computer
smart contract with strong trust guarantees

Many (1000s) untrustworthy physical computers
2 B DistriN=t

+ Access control of “electronic rights” (aka digital assets) in smart contracts

+ Object-capabilities: an access control system hidden within the lamlbda
calculus

+ How to represent electronic rights using object-capabilities”? The Electronic
Rights Transfer Protocol (ERTP)

- Documenting common code patterns in ERTP-based contracts

+ An ocap-safe subset of JavaScript: “Hardened JavaScript”

IS DistriN=t

The CIA triad from an application security perspective

- Confidentiality (a.k.a. Secrecy): No one can infer information they are
not supposed to know. Confidentiality usually rests on cryptography
to keep information secret.

- Example violation: “Bob learns how much money Alice has in her
bank account”

Example threat: side channel attack.

Confidentialit
- Integrity (a.k.a. Safety): No “bad” things happen. Integrity usually rests Y

on access control determining what agents can cause what effects.

The Information

Security
- Example threat: confused deputy attack. Triad

- Example violation: “Bob steals Alice’'s money”

- Availability (a.k.a. Liveness): “Good” things continue to happen.

- Example violation: “Bob prevents Alice from spending her money
as she wants”

Availability

(Image source: Nikander, Jussi & Manninen, Onni & Laajalahti, Mikko. (2020). Requirements for cybersecurity in

* Exam p | e th reat : a d en ial Of SerVi Ce attaC k . agricultural communication networks. Computers and Electronics in Agriculture.)

(Source: Miller, “A Taxonomy of Security Issues”, 2021, https://agoric.com/blog/technology/a-taxonomy-of-security-issues)

4 B DistriN=t

https://agoric.com/blog/technology/a-taxonomy-of-security-issues

The CIA triad from an application security perspective

- Confidentiality (a.k.a. Secrecy): No one can infer information they are
not supposed to know. Confidentiality usually rests on cryptography
to keep information secret.

- Example violation: “Bob learns how much money Alice has in her
bank account”

Example threat: side channel attack. Our focus
Confidentiality

- Integrity (a.k.a. Safety): No “bad” things happen. Integrity usually rests
on access control determining what agents can cause what effects.

The Information

Security
- Example threat: confused deputy attack. Triad

- Example violation: “Bob steals Alice’'s money”

- Availability (a.k.a. Liveness): “Good” things continue to happen.

- Example violation: “Bob prevents Alice from spending her money
as she wants”

Availability

(Image source: Nikander, Jussi & Manninen, Onni & Laajalahti, Mikko. (2020). Requirements for cybersecurity in

* Exam p | e th reat : a d en ial Of SerVi Ce attaC k . agricultural communication networks. Computers and Electronics in Agriculture.)

(Source: Miller, “A Taxonomy of Security Issues”, 2021, https://agoric.com/blog/technology/a-taxonomy-of-security-issues)

5 B DistriN=t

https://agoric.com/blog/technology/a-taxonomy-of-security-issues

Access control: two alternative views

Access control lists (ACLS)

Access control organised
around identity.

* R
» R /etc/passwd
2 R

Bob

)

N\

D

[
b=

/u/markm/foo

\

) (

/7
O

V4

°o||d
= ||

/etc/motd

1
A}
.
‘<

access control list

Capabillities (caps)

Access control organised around
specific acts of authorization.

/\
R e >
/etc/passwd
We
N
()
R ¢
Bob /u/markm/foo
R &
NI

R«
w e /etc/motd
o, >

capability list

(source: Miller et al. “Capability myths demolished”, 2003)

B DistriN=t

Capabillity systems excel at delegating authority

Bob A capability both designates a
resource and authorises some

Kind of access to It.
@ The two are inseparable.
4 Naming and authority are
@ bundled.

Granovetter Diagram

7 (source: Miller et al. “Capability myths demolished”, 2003) m Distn N-= t

"Only connectivity begets connectivity”

Three simple rules that describe how authority is acquired in an object-capability system:

// adlice executes:

Creation: e.g. alice creates carol herself let carol = makeCarol()
Bob

Endowment: e.g. at creation, alice Is 1/ alice’s constructor:
endowed with authority to access carol function makeAlice(carol) {.3} @‘

_ // alice executes:
Transfer: e.qg. alice transfers carol to bob bob . foo(carol)

8 B DistriN=t

What are object-capabilities?

* In a memory-safe programming language, an object-capabillity is simply an unforgeable
reference (a pointer) to an object (or a function)

» The designated resource = the object being pointed to

» EXxercising authority = invoking one of the designated object’s public methods

f?le m /etc/passwd // alice executes:
} - file.read()

an object an object reference a method call another object
(aka “a pointer”)

9 (source: Miller et al. “Capability myths demolished”, 2003) m Dist” N-= t

When is a language an object-capability language”

1. The language must be memory-safe: object pointers are unforgeable

- Cannot typecast an int to a pointer, cannot randomly access heap memory, ...
2. The language must offer strong encapsulation

» Objects need a way to privately store pointers to other objects
3. The language must not provide access to undeniable (ambient) authority

- Examples of undeniable authority: the ability to import arbitrary modules, the abillity to
access or update mutable global variables

4. The only way to delegate authority is by sharing a pointer to an object

» “Only connectivity begets connectivity”

10 B DistriN=t

From object-capabillities to “electronic rignts”
+ An object-capabillity is a kind of “right™:
- A bearer instrument: whoever holds it can use it
Properties: Non-exclusive, non-fungible, exercisable, non-assayable
- Starting from only object-capabilities, can we build other kinds of “rights™?
Example: e-money.

Properties: Exclusive, fungible, non-exercisable, assayable

11 I DistriN=t

2000s: Capabillity-based “financial instruments”

/ MintMaker \

mint name
sealer o . .
Capability-based Financial Instruments
unsealer
- Mark S. Miller', Chip Morningstar?, Bill Frantz>
balance |||

! Erights.org, 27020 Purissima Rd., Los Altos Hills, CA, 94022
markm@caplet.com

Bob

2 Communities.com, 10101 N. DeAnza Blvd., Cupertino, CA, 95014

chip@communities.com
frantz@communities.com

Abstract. Every novel cooperative arrangement of mutually suspicious parties
interacting electronically — every smart contract — effectively requires a new
cryptographic protocol. However, if every new contract requires new
cryptographic protocol design, our dreams of cryptographically enabled
electronic commerce would be unreachable. Cryptographic protocol design is
) too hard and expensive, given our unlimited need for new contracts.

Just as the digital logic gate abstraction allows digital circuit designers to create
\ / large analog circuits without doing analog circuit design, we present

cryptographic capabilities as an abstraction allowing a similar economy of
engineering effort in creating smart contracts. We explain the E system, which
embodies these principles, and show a covered-call-option as a smart contract
written in a simple security formalism independent of cryptography, but
automatically implemented as a cryptographic protocol coordinating five
mutually suspicious parties.

Simple e-money protocol (Miller et al., Financial Cryptography 2000)
N 25 lines of £ code

12 I DistriN=t

2010s: Distributed Resilient Secure ECMAScript (Dr. SES)

Asset

$ Issuer
Issuer

Distributed Electronic Rights in JavaScript

Mark S. Miller!, Tom Van Cutsem?, and Bill Tulloh

Escrow Exchange
Agent

' Google, Inc.
% Vrije Universiteit Brussel

2PC
Transaction
Coordinator

Abstract. Contracts enable mutually suspicious parties to cooperate safely
through the exchange of rights. Smart contracts are programs whose behavior
enforces the terms of the contract. This paper shows how such contracts can be
specified elegantly and executed safely, given an appropriate distributed, secure,
persistent, and ubiquitous computational fabric. JavaScript provides the ubiquity
but must be significantly extended to deal with the other aspects. The first part
of this paper is a progress report on our efforts to turn JavaScript into this fabric.
To demonstrate the suitability of this design, we describe an escrow exchange
Alice Bob contract implemented in 42 lines of JavaScript code.

Keywords: security, distributed objects, object-capabilities, smart contracts

Secure escrow exchange protocol (Miller et al., European Symposium on Programming, 2013)

N 42 lines of JavaScript P e Nt

13

2020s: The Agoric stack: writing smart contracts in JavaScript

a [/ AGORIC

Digital assets or “erights”
managed by

Smart Contracts s o
/0e framework / S | & /
2

Hardened JavaScript

executing on
a blockchain
(Tendermint / Cosmos)

public chain quorum solo quorum

14 B DistriN=t

ERTP: the Electronic Rights [ransfer Protocol

15

In ERTPE, digital assets or “rights™ are
represented as object-capabilities

- Access to a mint object = authority to

MiNt new assets of a given brand

- Access to a payment object and a purse

object of the same brand — authority to
spend (transfer) the asset

- Access to an invitation object —

authority to participate in a contract

brand to interact.

Indicates components @
must be of the same

mints

digital assets
Cbrana) (ratue

—ora_

Validates and stores balances’
rrrrr ds

How much?

I DistriN=t

/Zoe and ERTP: patterns

Contract Requirements

Zoe v0.24.0. Last updated August 25, 2022.

When writing a smart contract to run on Zoe, you need to know the proper format and other

expectations.

(source: Agoric)

Security of assets now hinges on the reachability of object-capabilities

Must carefully reason about (transitive) reachabillity

Patterns help facilitate this reasoning (elevate the level of abstraction)

16 I DistriN=t

Solidity Patterns

A compilation of patterns and best practices for the smart contract programming language Solidity

View on GitHub

Solidity Patterns

This document contains a collection of design and programming patterns for the smart contract
programming language Solidity in version 0.4.20. Note that newer versions might have changed some
of the functionalities. Each pattern consists of a code sample and a detailed explanation, including
background, implications and additional information about the patterns.

https://fravoll.github.io/solidity-patterns/

I DistriN=t

https://fravoll.github.io/solidity-patterns/

Agoric patterns

Patterns for Agoric smart contracts and code written in Hardened JavaScript

View on GitHub

Agoric patterns

Patterns

* Trade patterns: high-level patterns which can be derived from seat structure diagrams
© The bilateral trade agreement pattern
© The composite contract pattern
o The dependent participation pattern
© The independent participation pattern
© The exchange pattern
©o The managed assets pattern
o The salesperson pattern
* Code patterns: low-level patterns which cannot be derived from seat structure diagrams
o Generic code patterns

B Hardening interface obiects

https://ilyasmercan.qgithub.io/AgoricPatterns/

I DistriN=t

https://ilyasmercan.github.io/AgoricPatterns/

Mining patterns

19

Trade patterns: patterns of arranging invitations and seats

within a Zoe contract

Code patterns: patterns of arranging interactions among

objects in Hardened Javascript

Why"? Establish a pattern language. Elevate levels of

abstraction. Document best-practices.

assets using object-capabillities

Pattern repository made available on GitHub (

Provide insight into how to manage authority over digital

Rs welcome)

Design Patterns

Elements of Reusable
Object-Oriented.Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

Foreword by Grady Booch

$31¥3S ONILNIWOD TYNOISSIHO¥d ATISIM-NOSIaay *

I DistriN=t

Mined corpus: 10 idiomatic Agoric smart contracts

20

Name

Description

Atomic Swap

A basic trade of digital assets between two parties.

Automatic Refund

A trivial contract that gives the user back what they put in.

Barter Exchange

An exchange with an order book letting all kinds of goods to be
offered for explicit barter swaps.

Covered Call

Creates a call option, which is the right to buy an underlying asset.

Mint and Sell NFTs

A contract that mints NFTs and sells them through a separate sales
contract.

Mint Payments

An example of minting fungible tokens.

A low-level oracle contract for querying Chainlink (opens new win-

Oracle dow)or other oracles.
A contract for giving quotes that can be exercised. The quotes are
OTC Desk guaranteed to be exercisable because they are actually options with
escrowed underlying assets.
Sell Items A generic sales contract, mostly used for selling NFTs for money.

Simple Exchange

A basic exchange with an order book for one asset, priced in a
second asset.

I DistriN=t

Contracts x Code patterns

21

Enforcing .
5 Validate The . .
. eventual s The Design Partition
Hardening . Verifying all delayed The secure .
. interac- o revocable least authority
interface . . untrusted contract initializa- . shutdown .
: tions with | . . . : contract authority using
objects mvitations parame- tion . patterns
untrusted pattern interfaces facets
: ters pattern
parties
Atomic
X X X X X X
Swap
Automatic
X X X X X
Refund
Barter . . . « .
Exchange
Covered
X X X X X X
Call
Mint and N
Sell NFTs
Mint
X X X X X
Payments
Oracle X X X X X X X X
OTC Desk X X X X X X
Sell Items X X X X X X
Simple
X X X X X X
Exchange

Table B.2: Summarizing table of studied smart contracts and the code patterns found in these smart contracts.

I DistriN=t

|[dentified code patterns

Make modules powerless by default = requires Compartments
Make all interface objects transitively immutable — requires hardening

Make all interactions with untrusted parties asynchronous (similar to the
checks-effects-interaction pattern in Solidity) — requires eventual send

- Verify the authenticity of received objects: establish the authenticity via a

separate path to a trusted issuer (“brands check”) — requires sealer/
unsealer pairs

+ Design least authority interfaces — partition authority using facets

22 I DistriN=t

Turning JavasScript into an ocap-safe language:
“‘Hardened Javascript”

B DistriN=t

Hardened JavaScript Is a secure subset of standard Javascript

Full JavaScript

Key Idea: code running in

4 P
Hardened JavaScript harderepl JS can only affect
N " the outside world through
* N0 mutable primordials : . C
* no powerful glolbal objects by default ObJeCtS (Capablht GS) exphcmy
* can create Compartments granted to it from outside.

JSON

(inspired by the diagram at https://github.com/Agoric/Jessie)

_

24 B DistriN=t

https://github.com/Agoric/Jessie

Isolating modules using Compartments

Each Compartment has its own global object but shared (immutable) primordials.

Host environment

Realm

Compartment Compartment

globalThis

Deep-frozen
Objects

Deep-frozen
Primordials

Primordials: built-in ObjeCtS Ike Object, Object.prototype, Array, Function, Math, JSON, E€1C. .
25 EEE DistriN=t

Example: apply POLA to a basic shared log

We would like Alice to only write to the log, and Bob to only read from the log.

Assume each module is loaded in a separate Compartment (see: LavaMoat)

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return Object.freeze({read, write});

¥

let log = makeLog();
alice(log.write);
bob(log.read);

26 B DistriN=t

Example: apply POLA to a basic shared log

We would like Alice to only write to the log, and Bob to only read from the log.

Assume each module is loaded in a separate Compartment (see: LavaMoat)

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return Object.freeze({read, write});

¥

let log = makeLog();
alice(log.write);

bob(log.read); // Bob can still modify the function object itself

read.apply = function() { “gotcha” };

27 B DistriN=t

Example: apply POLA to a basic shared log

Hardened JavaScript provides a harden function that “deep-freezes” an object
(recurse through properties and the prototype chain)

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makelLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read: read, write: write});

¥

let log = makeLog();

alice(log.write);
bob(log.read); // Bob can still mgdlfy thi functlon.object 1tself

-)

28 B DistriN=t

29

- “Defensive consistency” (a.k.a. “Robust Safety” [Swasey et al., 2017]): a service should

retain its functional correctness (i.e. internal invariants and post-conditions) towards well-behaved
clients in the presence of adversarial clients (who may exhibit arbitrary behaviour)

P

ne harden function visits every value in the transitive closure over all own properties and over the

ototype chain and ensures the value is either frozen or “powerless” (e.g. a primitive value)

- Clients are no longer able to tamper with the AP/ surface of the object graph rooted in the

hardened object. Clients can only read properties and call functions.

- A hardened service does not imply immutability or purity! Hardened functions may close over

mutable state (this includes the get/set functions of accessor properties).

Hardening a service is a hecessary but not always a sufficient step to create defensively
consistent services in JavaScript

IS DistriN=t

s JavaScript an object-capability language”

1. The language must be memory-safe: object pointers are unforgeable
v Yes, all correct JavaScript VM implementations provide this guarantee
2. The language must offer strong encapsulation
v Yes, by hiding variables through lexical scope (also, private fields)
3. The language must not provide access to undeniable (ambient) authority
v Yes, when using Hardened JavaScript to load each module in its own Compartment
4. The only way to delegate authority is by sharing a pointer to an object

v Yes, if modules export only hardened objects (no mutable global variables)

30 B DistriN=t

What if Alice and Bob need more authority”?

If over time we want to expose more functionality to Alice and
Bob, we need to refactor all of our code.

import * as alice from "alice.js"; import * as alice from "alice.js";
import * as bob from “bob.js"; import * as bob from “bob.js";

function makeLog() { function makeLog() {
const messages = []; const messages = [];

function write(msg) { messages.push(msg); } function write(msg) { messages.push(msg); }

function read() { return [...messages]; } function read() { return [...messages]; }
return harden({read, write}); function size() { return messages.length(); }
I return harden({read, write, size});
¥
let log = makeLogQ); let log = makelLog();
alice(log.write); alice(log.write, log.size);
bob(log.read); bob(log.read, log.size);

31 B DistriN=t

EXpose distinct authorities through facets

Separate powerful authority across several distinct
interfaces through nested objects called facets

import * as alice from "alice.js"; import * as alice from "alice.js";
import * as bob from “bob.js"; import * as bob from “bob.js";

function makeLog() { function makeLog() {
const messages = []; const messages = [];

function write(msg) { messages.push(msg); } function write(msg) { messages.push(msg); }

function read() { return [...messages]; } function read() { return [...messages]; }
function size() { return messages.length(); } function size() { return messages.length(); }
return harden({read, write, size}); return harden({
1 reader: {read, size},
writer: {write, size}
let log = makeLog(); ;g
alice(log.write, log.size); }

bob(log.read, log.size);
let log = makeLog();
alice(log.writer);

bob(log.reader); <
32 EEI DistriN=t

Another exercise in POLA

» Bob wants to know if the messages Alice has logged were previously authorized by Carol

» Bob trusts Carol (to authorize messages), but he does not trust Alice

import * as alice from "alice.js";
import * as bob from “bob.js";
import * as carol from “carol.js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

h

let 1log = makeLog();

alice(log.write);
bob(log.read, carol.auth);
carol(alice);

33 |KULEUVEN DiStﬂN:t

Another exercise in POLA

// 1n carol.js
function makeCarol(logger) {
let [seal, unseal] = makeSealerUnsealerPair();
let stamped = new WeakMap();
function authorizeAndLog(msg) {
let stamp = seal(msg);
stamped.set(stamp, msg);
logger .write({..msg, stamp});

}
function auth(msg) {

return stamped.get(unseal(msg.stamp)) == msg;

¥
return harden({authorizeAndLog, auth});

¥

// 1n bob.js
function makeBob(read, auth) {

let msgs = read(); // untrusted
let authorized = msgs.filter(msg => auth(msg));

34

B DistriN=t

This is called “rights amplification”. It's a useful POLA building block.

* Only code that has access to both the unseal function and the mapping can authorize

// 1n carol.js
function makeCarol(logger) {
let [seal, unseal] = makeSealerUnsealerPair();
let stamped = new WeakMap();
function authorizeAndLog(msg) {
let stamp = seal(msg);
stamped.set(stamp, msg);
logger.write({..msg, stamp});
3
function auth(msg) {
return stamped.get(unseal(msg.stamp)) == msg;

¥
return harden({authorizeAndLog, auth});

¥

// 1in bob.js
function makeBob(read, auth) {

let msgs = read(); // untrusted
let authorized = msgs.filter(msg => auth(msg));

35

B DistriN=t

Code patterns in HardeneddS smart contracts: recap

Make modules powerless by default = requires Compartments
Make all interface objects transitively immutable — requires hardening

Make all interactions with untrusted parties asynchronous (similar to the
checks-effects-interaction pattern in Solidity) = requires eventual sending

- Verify the authenticity of received objects: establish the authenticity via a

separate path to a trusted issuer (“brands check”) — requires sealer/
unsealer pairs

+ Design least authority interfaces — partition authority using facets

36 I DistriN=t

KU LEUVEN

Capabillity-based financial instruments
or: object-capabilities meet smart contracts

Tom Van Cutsem
DistriNet, KU Leuven
March 2024

Questions?

tvcutsem.github.io be.linkedin.com/in/tomvc github.com/tvcutsem twitter.com/tvcutsem @tvcutsem@techhub.social

https://techhub.social/@tvcutsem
https://tvcutsem.github.io
https://be.linkedin.com/in/tomvc
https://twitter.com/tvcutsem
https://github.com/tvcutsem

