
Object-capability security for JavaScript applications
Tom Van Cutsem

DistriNet KU Leuven

twitter.com/tvcutsemgithub.com/tvcutsemtvcutsem.github.io be.linkedin.com/in/tomvc

https://be.linkedin.com/in/tomvc
https://tvcutsem.github.io
https://github.com/tvcutsem
https://twitter.com/tvcutsem

Application security & access control

2

Web application security

3

OAuth

certificate pinning

cookies

same-origin policy

CSRF

content security policy

html sanitizationHSTS

A software architecture view of Web application security

4

OAuth

certificate pinning

cookies

isolation

functions
encapsulation

dataflow

dependencies

modules

immutability

same-origin policy

CSRF

content security policy

html sanitizationHSTS

A software architecture view of Web application security

5

“Security is just the extreme of Modularity”
- Mark S. Miller

(Chief Scientist, Agoric)

Modularity: avoid needless dependencies (to prevent bugs)

Security: avoid needless vulnerabilities (to prevent exploits)

Object-capability security: a brief history

6

1966

Seminal paper on
capabilities in

operating systems by
Dennis & Van Horn

Communications of the ACM, Vol 9, No 3, March 1966

2008

Google Caja project creates
a capability-secure subset

of JavaScript for Web security

Google Caja enables safe embedding of
dynamic Web content on a webpage

1997

E, a pure “object-capability”
programming language

developed by
Electric Communities

“Capdesk”, a capability-based
file browser, written in E

1977

GNOSIS (later KeyKOS)
First capability-secure

operating system developed
by Tymshare

SDS 940 Time-sharing computer
See: Why KeyKOS is fascinating

https://developers.google.com/caja/
http://www.combex.com/tech/darpaBrowser.html
https://github.com/void4/notes/issues/41

JavaScript & Web3: Agoric’s DeFi platform

7

“Hardened” JavaScript

Digital assets (tokens)

Cosmos Blockchain

This Lecture

• Part I: why application security is critical to JavaScript applications

• Part II: the Principle of Least Authority, by example

• Part III: the object-capability model of access control

• Part IV: object-capability patterns

8

Part I
Why application security is critical to JavaScript applications

9

It’s no longer just about the Web. JavaScript is used widely across tiers

10

MobileEmbedded Desktop/Native Server Database

JavaScript applications are now built from thousands of modules

11

(source: modulecounts.com, Nov 2022)

2,000,000 modules on NPM

(source: npm blog, December 2018)

“The average modern web application has over
1000 modules […] 97% of the code in a modern
web application comes from npm. An individual
developer is responsible only for the final 3% that

makes their application unique and useful.”

http://modulecounts.com

It is exceedingly common to run code you don’t know or trust in a common environment

Composable code: it’s all about trust

12

Webpage

Browser env

Module Module

DOM Cookies

Smart contract dapp

Blockchain env

Module Module

Tokens Keys

Web server app

Server env

Module Module

Requests Files

What can happen when code goes rogue?

13

Webpage

Browser env

Module Module

DOM Cookies

Smart contract dapp

Blockchain env

Module Module

Tokens Keys

Web server app

Server env

Module Module

Requests Files

What can happen when code goes rogue?

14

Webpage

Browser env

Module Module

DOM Cookies

<script	src=“http://evil.com/ad.js”>

What can happen when code goes rogue?

Web server app

Server env

Module Module

Requests Files

npm	install	event-stream

(source: theregister.co.uk)
15

http://theregister.co.uk

These are examples of software supply chain attacks

16

(Source: https://develop.secure.software/6-reasons-software-security-teams-need-to-go-beyond-vulnerability-response, august 2022)

https://develop.secure.software/6-reasons-software-security-teams-need-to-go-beyond-vulnerability-response

Increasing awareness

17

npm audit

GitHub security alertsnpm security advisories

Snyk vulnerability DB

 Great tools, but address the symptoms, not the root cause

Avoiding interference is the name of the game

• Shield important resources/APIs from modules that don’t need access

• Apply Principle of Least Authority (POLA) to application design

18

Webpage

Browser env

Module Module

DOM Cookies

Smart contract dapp

Blockchain env

Module Module

Tokens Keys

Web server app

Server env

Module Module

Requests Files

Part II
The Principle of Least Authority, by example

19

Running example: apply POLA to a basic shared log

We would like Alice to only write to the log, and Bob to only read from the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = new Log();
alice(log);
bob(log);

JS app
Alice Bob

log

20

Running example: apply POLA to a basic shared log

 If Bob goes rogue, what could go wrong?

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = new Log();
alice(log);
bob(log);

JS app
Alice Bob

log

21

Bob has way too much authority!

 If Bob goes rogue, what could go wrong?

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = new Log();
alice(log);
bob(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

// Bob can delete the entire log
log.read().length = 0

// Bob can replace the ‘write’ function
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}
// Bob can replace the Array built-ins
Array.prototype.push = function(msg) {
 console.log(“I’m not logging anything”);
}

22

How to solve “prototype poisoning” attacks?

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = new Log();
alice(log);
bob(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

// Bob can delete the entire log
log.read().length = 0

// Bob can replace the ‘write’ function
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}
// Bob can replace the Array built-ins
Array.prototype.push = function(msg) {
 console.log(“I’m not logging anything”);
}

 Load each module in its own environment, 
 with its own set of “primordial” objects

23

Prerequisite: isolating JavaScript modules

• Today: JavaScript offers no standardized isolation
mechanisms

• Lots of environment-specific isolation mechanisms,
but non-portable and ill-defined:

• Web Workers: forced async communication, 
no shared memory

• iframes: mutable primordials, “identity
discontinuity”

• nodejs vm module: same issues

JS app
Environment

Module Module

Shared resources

24

ShadowRealms (TC39 Stage 3 proposal)

ShadowRealm

Host environment

ShadowRealm

globalThis

Array

globalThis
Primordials*Math

Objects

* Primordials: built-in objects like Object, Object.prototype, Array, Function, Math, JSON, etc.

Array

Math

25

 Intuitions: “iframe without DOM”, “principled version of node’s `vm` module”

Compartments (TC39 Stage 1 proposal)

Host environment

Compartment Compartment

Array

globalThis

Array

globalThis globalThis
Primordials*Math

Objects

Deep-frozen	
Primordials

Deep-frozen	
Objects

MathShadowRealm ShadowRealm

26
* Primordials: built-in objects like Object, Object.prototype, Array, Function, Math, JSON, etc.

 Each Compartment has its own global object but shared (immutable) primordials.

Key idea: code running in
hardened JS can only affect
the outside world through
objects (capabilities) explicitly
granted to it from outside.

Hardened JavaScript is a secure subset of standard JavaScript

(inspired by the diagram at https://github.com/Agoric/Jessie)

Full JavaScript

Strict-mode JavaScript

Hardened JavaScript

JSON

• no mutable primordials
• no powerful global objects by default
• can create Compartments

27

https://github.com/Agoric/Jessie

LavaMoat

•CLI tool that puts each package dependency into its own
hardened JS sandbox environment

•Auto-generates config file indicating authority needed by
each package

•Plugs into build tools like Webpack and Browserify

https://github.com/LavaMoat/lavamoat

28

https://github.com/LavaMoat/lavamoat

LavaMoat enables more focused security reviews

29

https://github.com/LavaMoat/lavamoat

Exposure to package dependencies
without LavaMoat sandboxing

Exposure to package dependencies
with LavaMoat sandboxing

https://github.com/LavaMoat/lavamoat

Back to our example

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = new Log();
alice(log);
bob(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

// Bob can delete the entire log
log.read().length = 0

// Bob can replace the ‘write’ function
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}
// Bob can replace the Array built-ins
Array.prototype.push = function(msg) {
 console.log(“I’m not logging anything”);
}

With Alice and Bob’s code running in their own 
Compartment, we mitigate the poisoning attack

30

One down, three to go

POLA: we would like Alice to only write to the log,
and Bob to only read from the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = new Log();
alice(log);
bob(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

// Bob can delete the entire log
log.read().length = 0

// Bob can replace the ‘write’ function
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}

31

Make the log’s interface tamper-proof

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = Object.freeze(new Log());
alice(log);
bob(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

// Bob can delete the entire log
log.read().length = 0

// Bob can replace the ‘write’ function
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}

32

Object.freeze makes property bindings (not
their values) immutable

Make the log’s interface tamper-proof. Oops.

Functions are mutable too. Freeze doesn’t
recursively freeze the object’s functions.

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = Object.freeze(new Log());
alice(log);
bob(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

// Bob can delete the entire log
log.read().length = 0

// Bob can replace the ‘write’ function
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}

// Bob can still modify the write function
log.write.apply = function() { “gotcha” };

33

Make the log’s interface tamper-proof

HardenedJS provides a harden function that
“deep-freezes” an object

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = harden(new Log());
alice(log);
bob(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

// Bob can delete the entire log
log.read().length = 0

// Bob can replace the ‘write’ function
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}

// Bob can still modify the write function
log.write.apply = function() { “gotcha” };

34

Two down, two to go

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = harden(new Log());
alice(log);
bob(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

// Bob can delete the entire log
log.read().length = 0

// Bob can replace the ‘write’ function
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}

// Bob can still modify the write function
log.write.apply = function() { “gotcha” };

35

Two down, two to go

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = harden(new Log());
alice(log);
bob(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

// Bob can delete the entire log
log.read().length = 0

// Bob can replace the ‘write’ function
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}

// Bob can still modify the write function
log.write.apply = function() { “gotcha” };

36

Don’t share access to mutable internals

• Modify read() to return a copy of the mutable state.

• Even better would be to use a more efficient copy-on-write or
“persistent” data structure (see immutable-js.com)

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return [...this.messages_]; }
}

let log = harden(new Log());
alice(log);
bob(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

// Bob can delete the entire log
log.read().length = 0

// Bob can replace the ‘write’ function
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}

// Bob can still modify the write function
log.write.apply = function() { “gotcha” };

37

http://immutable-js.com

Three down, one to go

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return [...this.messages_]; }
}

let log = harden(new Log());
alice(log);
bob(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

// Bob can delete the entire log
log.read().length = 0

// Bob can replace the ‘write’ function
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}

// Bob can still modify the write function
log.write.apply = function() { “gotcha” };

38

Three down, one to go

• Recall: we would like Alice to only write to the log, and Bob
to only read from the log.

• Bob receives too much authority. How to limit?

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return [...this.messages_]; }
}

let log = harden(new Log());
alice(log);
bob(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

// Bob can delete the entire log
log.read().length = 0

// Bob can replace the ‘write’ function
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}

// Bob can still modify the write function
log.write.apply = function() { “gotcha” };

39

Pass only the authority that Bob needs.

Just pass the write function to Alice and the read
function to Bob. Can you spot the bug?

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return [...this.messages_]; }
}

let log = harden(new Log());
alice(log.write);
bob(log.read);

JS app
Alice Bob

write

// in bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

// Bob can delete the entire log
log.read().length = 0

// Bob can replace the ‘write’ function
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}

// Bob can still modify the write function
log.write.apply = function() { “gotcha” };

read𝑓𝑓

40

Pass only the authority that Bob needs.

To avoid, must pass “bound” functions

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return [...this.messages_]; }
}

let log = harden(new Log());
alice(log.write.bind(log));
bob(log.read.bind(log));

// in bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

// Bob can delete the entire log
log.read().length = 0

// Bob can replace the ‘write’ function
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}

// Bob can still modify the write function
log.write.apply = function() { “gotcha” };

JS app
Alice Bob

write read𝑓𝑓

41

Success! We thwarted all of Evil Bob’s attacks.

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return [...this.messages_]; }
}

let log = harden(new Log());
alice(log.write.bind(log));
bob(log.read.bind(log));

// in bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

// Bob can delete the entire log
log.read().length = 0

// Bob can replace the ‘write’ function
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}

// Bob can still modify the write function
log.write.apply = function() { “gotcha” };

JS app
Alice Bob

write read𝑓𝑓

42

Is there a better way to write this code?

The burden of correct use is on the client
of the class. Can we avoid this?

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return [...this.messages_]; }
}

let log = harden(new Log());
alice(log.write.bind(log));
bob(log.read.bind(log));

JS app
Alice Bob

write read𝑓𝑓

43

Use the Function as Object pattern

• A record of closures hiding state is a fine representation of an
object of methods hiding instance vars

• Pattern long advocated by Doug Crockford instead of using
classes or prototypes

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return [...this.messages_]; }
}

let log = harden(new Log());
alice(log.write.bind(log));
bob(log.read.bind(log));

JS app
Alice Bob

write read𝑓𝑓

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
alice(log.write);
bob(log.read);

(See also https://martinfowler.com/bliki/FunctionAsObject.html)

44

https://martinfowler.com/bliki/FunctionAsObject.html

Use the Function as Object pattern
JS app

Alice Bob

write read𝑓𝑓

45

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
alice(log.write);
bob(log.read);

What if Alice and Bob need more authority?
JS app

Alice Bob

write read𝑓𝑓

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
alice(log.write);
bob(log.read);

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 function size() { return messages.length(); }
 return harden({read, write, size});
}

let log = makeLog();
alice(log.write, log.size);
bob(log.read, log.size);

size
𝑓

46

If over time we want to expose more functionality to Alice and
Bob, we need to refactor all of our code.

Expose distinct authorities through facets
JS app

Alice Bob

writer reader

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 function size() { return messages.length(); }
 return harden({
 reader: {read, size},
 writer: {write, size}
 });
}

let log = makeLog();
alice(log.writer);
bob(log.reader);

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 function size() { return messages.length(); }
 return harden({read, write, size});
}

let log = makeLog();
alice(log.write, log.size);
bob(log.read, log.size);

47

Easily deconstruct the API of a single powerful object into
separate interfaces by nesting objects

Demo

48

https://github.com/tvcutsem/lavamoat-demo

End of Part I: recap

• Modern JS apps are composed from many
modules. You can’t trust them all.

• Traditional security boundaries don’t exist
between modules. Compartments add basic
isolation.

• Isolated modules must still interact!

• Fine-grained access control needed to
compose functionality from untrusted modules
in a least-authority manner

49

JS app
Environment

Module Module

Shared resources

Part III
The object-capability model of access control

50

Access control: basic terminology

51 (source: Miller et al. “Capability myths demolished”, 2003)

Access Matrix

Who has what authority over which resources?

Principle of Least Authority (POLA): a tale of two copies

52

cp	/home/tom/in.txt	/home/tom/out.txt	 cat	<	/home/tom/in.txt	>	/home/tom/out.txt	

Access control: two alternative views

53

Access control lists (ACLs) Capabilities (caps)
Access control organised

around identity.
Access control organised around
specific acts of authorization.

(source: Miller et al. “Capability myths demolished”, 2003)

Access control: two alternative views

54

Access control lists (ACLs) Capabilities (caps)
Access control organised

around identity.
Access control organised around
specific acts of authorization.

Despite the apparent symmetry, these models are not equivalent!
(source: Miller et al. “Capability myths demolished”, 2003)

Capability systems excel at delegating authority

55

Granovetter Diagram

A capability both designates a
resource and authorises some
kind of access to it.

The two are inseparable.

(source: Miller et al. “Capability myths demolished”, 2003)

• In a memory-safe programming language, an object-capability is simply an unforgeable
reference (a pointer) to an object (or a function)

• The designated resource = the object being pointed to

• Exercising authority = invoking one of the designated object’s public methods

What are object-capabilities?

56

a method callan object another object

// alice executes:
file.read()

file

(source: Miller et al. “Capability myths demolished”, 2003)

an object reference
(aka “a pointer”)

When is a language an object-capability language?

1. The language must be memory-safe: object pointers are unforegeable

• Cannot typecast an int to a pointer, cannot randomly access heap memory, …

2. The language must offer strong encapsulation

• Objects need a way to privately store pointers to other objects

3. The language must not provide access to undeniable (ambient) authority

• Examples of undeniable authority: the ability to import arbitrary modules, the ability to
update mutable global variables

4. The only way to delegate authority is by sharing a pointer to an object

• “Only connectivity begets connectivity”

57

“Only connectivity begets connectivity”

Three simple rules that describe how authority can be acquired in a capability-secure system:

58

// alice executes:
let carol = makeCarol()Creation: e.g. alice creates carol herself

// alice executes:
bob.foo(carol)Transfer: e.g. alice transfers carol to bob

// alice’s constructor:
function makeAlice(carol) {…}

Endowment: e.g. at creation, alice is
endowed with authority to access carol

Considerations when delegating authority using capabilities

When Alice delegates authority to Bob, she may want
to limit the authority given to Bob (attenuation)

Bob may also want to combine the authority given to
him with his other authorities to gain additional
authorities (rights amplification)

59

Part IV
Object-capability Patterns

60

Design Patterns (“Gang of Four”, 1994)

61

• Visitor
• Factory
• Observer
• Singleton
• State
• …

Design Patterns for robust composition (Mark S. Miller, 2006)

62

http://www.erights.org/talks/thesis/markm-thesis.pdf

• Taming
• Facet
• Sealer/unsealer pair
• Caretaker
• Membrane
• …

Further limiting Bob’s authority

We would like to give Bob only temporary read
access to the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();

alice(log.write);
bob(log.read);

JS app
Alice Bob

write read𝑓𝑓

63

Use caretaker to insert access control logic

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
let [rlog, revoke] = makeRevokableLog(log);
alice(log.write);
bob(rlog.read);

JS app
Alice Bob

write

read

𝑓𝑓

𝑓

We would like to give Bob only temporary read
access to the log.

64

Use caretaker to insert access control logic

We would like to give Bob only temporary read
access to the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
let [rlog, revoke] = makeRevokableLog(log);
alice(log.write);
bob(rlog.read);

// to revoke Bob’s access:
revoke();

JS app
Alice Bob

write

read

𝑓

𝑓

𝑓

65

Use caretaker to insert access control logic
JS app

Alice Bob

write

read

𝑓𝑓

𝑓

function makeRevokableLog(log) {
 function revoke() { log = null; };
 let proxy = {
 write(msg) { log.write(msg); }
 read() { return log.read(); }
 };
 return harden([proxy, revoke]);
}

66

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
let [rlog, revoke] = makeRevokableLog(log);
alice(log.write);
bob(rlog.read);

// to revoke Bob’s access:
revoke();

A caretaker is just a proxy object
JS app

Alice Bob

write

read

𝑓𝑓

𝑓

function makeRevokableLog(log) {
 function revoke() { log = null; };
 let proxy = {
 write(msg) { log.write(msg); }
 read() { return log.read(); }
 };
 return harden([proxy, revoke]);
}

67

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
let [rlog, revoke] = makeRevokableLog(log);
alice(log.write);
bob(rlog.read);

// to revoke Bob’s access:
revoke();

A caretaker is just a proxy object

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
let [rlog, revoke] = makeRevokableLog(log);
alice(log.write);
bob(rlog.read);

// to revoke Bob’s access:
revoke();

function makeRevokableLog(log) {
 function revoke() { log = null; };
 let proxy = {
 write(msg) { log.write(msg); }
 read() { return log.read(); }
 };
 return harden([proxy, revoke]);
}

JS app
Alice Bob

write

read

𝑓

𝑓

𝑓

68

Taming is the process of restricting access to powerful APIs

• Expose powerful objects through restrictive proxies to third-party code

• E.g. Alice might give Bob read-only access to a specific subdirectory of her file system

JS app
Alice Bob

restricted	
API	access

Host resources

full	API	
access

69

Taming is the process of restricting access to powerful APIs

• Example: how Google Caja limits access to the browser DOM

70

(source: Google Caja documentation: https://developers.google.com/caja/docs/about)

https://developers.google.com/caja/docs/about

Taming is the process of restricting access to powerful APIs

Potential hazard: the taming proxy must ensure it does not “leak” any host
resources via its restricted API.

71

JS app
Alice Bob

restricted	
API	access

Host resources

full	API	
access

Bob may still access the log’s messages
JS app

Alice Bob

write

read

𝑓𝑓

𝑓

msgs

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
let [rlog, revoke] = makeRevokableLog(log);
alice(log.write);
bob(rlog.read);

// to revoke Bob’s access:
revoke();

let msgs = read()

[]

72

function bob(log) {
 let msgs = log.read();
 …
}

Membranes are generalized caretakers

 Proxy any object reachable from the log

JS app
Alice Bob

write

read

𝑓𝑓

𝑓

msgs

[]

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
let [rlog, revoke] = makeRevokableMembrane(log);
alice(log.write);
bob(rlog.read);

let msgs = read()

[]

73

function bob(log) {
 let msgs = log.read();
 …
}

Membranes are generalized caretakers
JS app

Alice Bob

write

read

𝑓

𝑓

msgs

[]

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
let [rlog, revoke] = makeRevokableMembrane(log);
alice(log.write);
bob(rlog.read);

// to revoke Bob’s access:
revoke();

let msgs = read()

[]

𝑓

74

function bob(log) {
 let msgs = log.read();
 …
}

Membranes are generalized caretakers
JS app

Alice Bob

write

read

𝑓

𝑓

msgs

[]

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
let [rlog, revoke] = makeRevokableMembrane(log);
alice(log.write);
bob(rlog.read);

// to revoke Bob’s access:
revoke();

let msgs = read()

[]

𝑓

Deep dive article at tvcutsem.github.io/membranes

75

function bob(log) {
 let msgs = log.read();
 …
}

http://tvcutsem.github.io/membranes

Compartments vs Membranes

• Compartments manage initial authority. Membranes manage subsequent interactions.

76

Realm

Host environment

Compartment Compartment

Array

globalThis globalThis

Math

Membrane

Compartments vs Membranes

• Compartments manage initial authority. Membranes manage subsequent interactions.

77

Realm

Host environment

Compartment Compartment

Array

globalThis globalThis

Math

Membrane

Compartments vs Membranes

•Compartments manage initial authority. Membranes manage subsequent interactions.

78

Realm

Host environment

Compartment Compartment

Array

globalThis globalThis

Math

Membrane

Another exercise in POLA

•Eve needs access to the log as a whole, but we don’t want her to read or modify the
content of the log

79

import * as alice from "alice.js";
import * as bob from “bob.js";
import * as eve from “eve.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();

alice(log.write);
bob(log.read);
eve(log);

JS app
Alice Eve Bob

𝑓write log 𝑓 read

Sealer/unsealer pairs

•A sealer/unsealer pair enables the confidentiality and integrity properties of encryption, but in-
process and without any actual cryptography

80

import * as alice from "alice.js";
import * as bob from “bob.js";
import * as eve from “eve.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
let [seal, unseal] = makeSealerUnsealerPair();
alice((msg) => log.write(seal(msg));
bob(() => log.read().map(msg => unseal(msg));
eve(log);

JS app
Alice Eve Bob

𝑓 log 𝑓

Sealer/unsealer pairs

• seal “encrypts” objects, unseal “decrypts” objects

81

import * as alice from "alice.js";
import * as bob from “bob.js";
import * as eve from “eve.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
let [seal, unseal] = makeSealerUnsealerPair();
alice((msg) => log.write(seal(msg));
bob(() => log.read().map(msg => unseal(msg));
eve(log);

JS app
Alice Eve Bob

𝑓
seal+write

log 𝑓

Sealer/unsealer pairs

• seal “encrypts” objects, unseal “decrypts” objects

82

import * as alice from "alice.js";
import * as bob from “bob.js";
import * as eve from “eve.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
let [seal, unseal] = makeSealerUnsealerPair();
alice((msg) => log.write(seal(msg));
bob(() => log.read().map(msg => unseal(msg));
eve(log);

JS app
Alice Eve Bob

𝑓
seal+write

log 𝑓
read+unseal

This is called “rights amplification”. It’s a useful POLA building block.

•Only code that has access to both the unseal function
and the original object can access the sealed value

83

import * as alice from "alice.js";
import * as bob from “bob.js";
import * as eve from “eve.js";

function makeLogger() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLogger();
let [seal, unseal] = makeSealerUnsealerPair();
alice((msg) => log.write(seal(msg));
bob(() => log.read().map(msg => unseal(msg));
eve(log);

JS app

Embedding environment

Alice Eve Bob

𝑓
seal+write

log 𝑓
read+unseal

Object-capability patterns are used in industry

Moddable XS
Uses Compartments for safe end-user

scripting of IoT products
Uses Hardened JS for writing

smart contracts and Dapps
Uses LavaMoat to sandbox plugins

in their crypto web wallet

MetaMask Snaps Agoric Zoe

84

Uses taming for safe html
embedding of third-party content

Mozilla Firefox Salesforce Lightning
Uses membranes to isolate

site origins from privileged JS code

Google Caja
Uses realms and membranes to
isolate & observe UI components

Summary

85

This Lecture

• Part I: why application security is
critical to JavaScript applications

• Part II: the Principle of Least Authority,
by example

• Part III: the object-capability model of
access control

• Part IV: object-capability patterns

86

JS app

Alice Bob

log

Webpage
Browser env

Module Module

DOM Cookies

The take-away messages

•Modern applications are composed from many modules.
You can’t trust them all.

• Apply the “principle of least authority” to limit trust.

• Isolate modules (Hardened JS & Lavamoat)

• Let modules interact safely using patterns such as
facets, caretaker, membranes, taming, …

•Understanding these patterns is important in a world of
> 2,000,000 NPM modules.

•Even more critical in a Web3 world where code starts to
directly interact with digital assets

JS app
Environment

Module Module

Shared resources

87

Appendix

88

Further Reading
• Mark Miller, Ka-Ping Yee, Jonathan Shapiro, “Capability Myths Demolished”: https://srl.cs.jhu.edu/pubs/SRL2003-02.pdf

• Compartments: https://github.com/tc39/proposal-compartments and https://github.com/Agoric/ses-shim

• ShadowRealms: https://github.com/tc39/proposal-realms and github.com/Agoric/realms-shim

• Hardened JS (SES): https://github.com/tc39/proposal-ses and https://github.com/endojs/endo/tree/master/packages/ses

• Subsetting ECMAScript: https://github.com/Agoric/Jessie

• Kris Kowal (Agoric): “Hardened JavaScript” https://www.youtube.com/watch?v=RoodZSIL-DE

• Making Javascript Safe and Secure: Talks by Mark S. Miller (Agoric), Peter Hoddie (Moddable), and Dan Finlay (MetaMask): https://www.youtube.com/playlist?
list=PLzDw4TTug5O25J5M3fwErKImrjOrqGikj

• Moddable: XS: Secure, Private JavaScript for Embedded IoT: https://blog.moddable.com/blog/secureprivate/

• Membranes in JavaScript: tvcutsem.github.io/js-membranes and tvcutsem.github.io/membranes

• Caja: https://developers.google.com/caja

• Chip Morningstar, “What are capabilities”: http://habitatchronicles.com/2017/05/what-are-capabilities/

• Why KeyKOS is fascinating: https://github.com/void4/notes/issues/41

89

https://srl.cs.jhu.edu/pubs/SRL2003-02.pdf
https://github.com/tc39/proposal-compartments
https://github.com/Agoric/ses-shim
https://github.com/tc39/proposal-realms
http://github.com/Agoric/realms-shim
https://github.com/tc39/proposal-ses
https://github.com/endojs/endo/tree/master/packages/ses
https://github.com/Agoric/Jessie
https://www.youtube.com/watch?v=RoodZSIL-DE
https://www.youtube.com/playlist?list=PLzDw4TTug5O25J5M3fwErKImrjOrqGikj
https://www.youtube.com/playlist?list=PLzDw4TTug5O25J5M3fwErKImrjOrqGikj
https://blog.moddable.com/blog/secureprivate/
http://tvcutsem.github.io/js-membranes
http://tvcutsem.github.io/membranes
https://developers.google.com/caja
http://habitatchronicles.com/2017/05/what-are-capabilities/
https://github.com/void4/notes/issues/41

Acknowledgements
• Mark S. Miller (for the inspiring and ground-breaking work on Object-capabilities, Robust Composition, E, Caja,

JavaScript and Secure ECMAScript)

• Marc Stiegler’s “PictureBook of secure cooperation” (2004) is a great source of inspiration for patterns of robust
composition

• Doug Crockford’s “JS: the Good Parts” and “How JS Works” books provide a highly opinionated take on how to write
clean, good, robust JavaScript code

• Kate Sills and Kris Kowal at Agoric for helpful comments on earlier versions of these slides

• The Cap-talk and Friam community for inspiration on capability-security and capability-secure design patterns

• TC39 and the es-discuss community, for the interactions during the design of ECMAScript 2015, and in particular all the
feedback on the Proxy API

• The SES secure coding guide: https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-
guide.md

90

https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md
https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md
https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md
https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md

