KU LEUVEN

Object-capability security for JavaScript applications

Tom Van Cutsem
DistriNet KU Leuven

tvcutsem.github.io be.linkedin.com/in/tomvc github.com/tvcutsem twitter.com/tvcutsem

https://be.linkedin.com/in/tomvc
https://tvcutsem.github.io
https://github.com/tvcutsem
https://twitter.com/tvcutsem

Application security & access control

"My Camera App"” Would Like

to Access the Camera

This app uses the camera to take cute
pictures of cats.

Don’t Allow

“Atom” would like to access your calendar.
(ol

?

Don't Allow OK

In-app purchases
Identity

Contacts
Photos/Media/Files
Camera

Wi-Fi connection information

Google play | acosT |

© © @ 2% Let this app access your info? x David
&« C' @ Secure https://account.live.co.. G 7

| .

=

.. Let this app access your info?
cyberduck.io

Cyberduck needs your permission to:

’a Access OneDrive files
Cyberduck will be able to open and edit
OneDrive files, including files shared with
you.

You can change these application permissions at any
time in your account settings.

o

Terms of Use Privacy & Cookies Sign out

Microsoft

(O 3 & Mozilla Foundation (US) | https://addons.mozil

itic)| =
G Add Gesturefy?

It requires your permission to:

* Access your data for all websites
* Read and modify bocokmarks
* Read and modify browser settings
¢ |Input data to the clipboard
¢ Download files and read and modify the browser’s
download history
¢ Display notifications to you
* Access recently closed tabs
‘ ¢ Access browser tabs

! Cancel

Share with others

People

hey deb here's the pitch for the festival

= Deborah Tennen X Add more people...

Get shareable link (&

/7 -

v Can edit

Can comment

Can view

Notify people v

B DistriN=t

Web application security

same-origin policy

certificate pinning

OAuth .
cookies

content security policy

CSRF

LSTS Ntml sanitization

DLUHSD

Open Web Application

Security Project

B DistriN=t

A software architecture view of \Web application security

SaFRe-oHgIR-potcy modules
certificatepinning runctions
encapsulation
SALth
cookies dependencies
CORteRt-security-potcy immutability
CSRE datatlow
HSTS atnksanitization 1ISOlation

4 B DistriN=t

A software architecture view of YWepb application security

"Security Is just the extreme of Modularity”

- Mark S. Miller {
(Chief Scientist, Agoric) s
[S 4

Modularity: avoid needless dependencies (to prevent bugs)

Security: avoid needless vulnerabilities (to prevent exploits)

5 B DistriN=t

Object-capability security: a brief history

Windows Help

= 7 jrootjelang/

caplets; darpaBrowser/

#darpaBrowser.caplet
darpaBrowserOld.caplet
\ZtestDarpaB rowser.e
-template.txt testdarpaBrowser.caplet
i
Jejar unconfinedBrowser.e
o

Programming Semantics for Multiprogrammed
Computations

Jack B. Dennis and Earl C. Van Hom

Massachusetts Institute of Technology, Combridge, Massachusetts

The semantics are defined for o number of meta-instructions
which perform operctions essential to the writing of programs
in multiprogrommed computer systems. These meta-instructions
relate to parallel processing, protection of separate computa-
fions, program debugging, and the sharing omong users of
memory segments and other computing objects, the names of
which are hierarchically structured. The language sophistica-
tion contemplated is midway between on assembly longuage
ond an advenced olgebraic language.

Presented at an ACM Programming Languages and Pragmaties
Conference, San Dimas, California, August 1965,

Work reported hercin was supported by Project MAC, an MIT
research program sponsored by the Advaneed Research Projects
Ageney, Department of Defense, under Office of Naval Research
Contract Number Nonr-4102(01). Reproduction in whole or in
part is permitted for any purpose of the United States Govern-
ment.

Volume 9 / Number 3 / March, 1966

Introduction

An increasing percentage of computation activity will
be carried ont by multiprogrammed computer systems,
Such systems are characterized by the application of com-
putation resources (processing capacity, main memory,
file storage, peripheral equipment) to many separate but
concurrently operating computations,

We can cite three quite different examples of multipro-
grammed computer systems to illustrate their diversity of
application, The American Airlines SABRE passenger
record system couples ticketing agents at dispersed offices
to a central data file [1]. The computer support systems of
NASA provide real time control and monitoring of manned
space flights [2). The Project MAC time-sharing system
permits research workers closer internction with the powers
of automatic computation [3]. Although these are all on-
line systems, multiprogramming techniques have also been

Communications of the ACM 143

=|eVersion.txt
a eprops-template.txt
Eleprops.txt

¥ eprops.txt~

Refresh done.

Open Source
Distributed

Capabilities

Welcome to £R7ghts.org home

of £,
the secure distributed
pure-object platform
and p2p scripting language
for writing Capability-Based
Smart Contracts.

[California Home] [Mirror in Virtual Tongal

% Caja Playground

& C' © caja.appspot.com/#examples/clock.html Dk &

Tells us what you think File a bug Help!
Caja Playground

GO L)gle Google Caja. Copyright (C) 2011, Google Inc. Rev 4777 built on 2012-02-09 11:57:24. | +7 | 32

Caja Autodetect Mode v

Examples Source Policy Cajoled Source Rendered Result Compiler Messages Runtime Messages

& Applications > Eval Result

Canvas Clock
Unboxed Game
Markdown Editor
Embed Flash
Embed Flash 2
Game of Life

® Attacks

® Benchmarks

See https://developer.mozilla.org/en/Canvas_tutorial/Basic_animations#An_animation_example_2 for
canvas tutorial.

SDS 940 Time-sharing computer

Google Caja enables safe embedding of
dynamic Web content on a webpage

Communications of the ACM, Vol 9, No 3, March 1966 See: Why KeyKOS is fascinating

“Capdesk”, a capability-based
file browser, written in E

1997

1966 1977

2008

Seminal paper on
capabillities In
operating systems by
Dennis & Van Horn

GNOSIS (later KeyKOS)
First capabillity-secure
operating system developed
by Tymshare

E, a pure “object-capability”
programming language
developed by
Electric Communities

Google Caja project creates
a capabllity-secure subset
of JavaScript for Web security

6 B DistriN=t

https://developers.google.com/caja/
http://www.combex.com/tech/darpaBrowser.html
https://github.com/void4/notes/issues/41

JavaScript & Web3: Agoric’s DeFi platform

= |/l AGORIC

Digital assets (tokens) / S';‘::h‘t’:“*’“‘s V
“Hardened” Javascript » °

/ 2
Cosmos Blockchain ’ ' &
- <

public chain quorum solo quorum

7 EEE DistriN=t

This Lecture

- Part |: why application security is critical to JavaScript applications
- Part ll: the Principle of Least Authority, by example

- Part lll: the object-capability model of access control

- Part |V: object-capabillity patterns

8 B DistriN=t

Part |
Why application security is critical to JavaScript applications

: B DistriN=t

t’s no longer just about the Web. JavaScript is used widely across tiers

m CORDOVA®
1

Embedded Mobile Desktop/Native Server Database

10 B DistriN=t

Javascript applications are now built from thousands of modules

2500000

2000000

1500000

1000000

500000

CPAN
Maven Central (Java)
B npm (node.js)
Bl nuget (.NET)
Bl Packagist (PHP)
B PyPI
2 Rubygems.org

2012 2014 2016 2018 2020

(source: modulecounts.com, Nov 2022)

11

2,000,000 modules on NPM

“The average modern web application has over
1000 modules [...] 97% of the code in a modern
web application comes from npm. An individual

developer is responsible only for the final 3% that
makes their application unique and useful.”

(source: npom blog, December 2018)

B DistriN=t

http://modulecounts.com

Composable code: it’'s all about trust

It Is exceedingly common to run code you don’t know or trust in a common environment

Browser env Server env Blockchain env

Smart contract dapp

Webpage Web server app

Tokens Keys

Cookies Requests Files

a [/ AGORIC

12 B DistriN=t

What can happen when code goes rogue”?

Browser env Server env Blockchain env

Smart contract dapp

Web server app

] - | [

Tokens Keys

Cookies Requests Files

=/ AGORIC

13 B DistriN=t

What can happen when code goes rogue”?

Browser env @ The New York Times & 4
@nytimes
Webpage Attn: NYTimes.com readers: Do not click pop-up box warning
about a virus -- it's an unauthorized ad we are working to
eliminate.
D MOdU‘e Q17 7:54 PM - Sep 13, 2009 ®
L See The New York Times's other Tweets >

DOM Cookies

% <script src=“http://evil.com/ad.js”’>

14 B DistriN=t

What can happen when code goes rogue”?

Check your repos... Crypto-coin-
stealing code sneaks into fairly
popular NPM lib (2m downloads per

Server env week)

Node.js package tried to plunder Bitcoin wallets

By Thomas Claburn in San Francisco 26 Nov 2018 at 20:58 49() SHARE V¥

Web server app

Module

,—-fet.MSCI
ons .extend({}» "
windex - ‘this.attr('data-slide-toO

| seindex) options.interval = fa
Requests Files y

, taf‘get, optiOnS)

r ”.r

npm install event-stream

(source: thereqister.co.uk)

15 B DistriN=t

NG O¢
\@dc

http://theregister.co.uk

These are examples of software supply chain attacks

Chain Security | August 18, 2022

B [easons app Sec feams ShUUld Shlﬁ gears and 4o 1. Tl;'Iusting code within the supply chain has become
o problematic
bevond Iegacv VUInerabIII"es Many tools designed to help secure software-development pipelines focus on rating the
projects, programmers, and open-source components and their maintainers. However,

a,_h\ S Ao . recent events—such as the emergence the “protestware” that changed the node.ipc open
John P. Mello Jr., Freelance technology writer. reap mor . L : :
source software for political reasons or the hijacking of the popular ua-parser-js project

by cryptominer—underscore that seemingly secure projects can be compromised, or
otherwise pose security risks to organizations. *

Tomislav Peri¢in, co-founder and chief software architect at ReversinglLabs, noted how in
the case of SolarWinds, the trusted source was pushing infected software. Catching
those kinds of mistakes requires a focus on how code behaves, regardless of where it
came from.

‘As long as we keep ignoring the core of the problem —
which is how do you trust code — we are not handling
software supply chain security.”

—Tomislav Pericin

With software supply chain attacks surging, dev and application security teams should
shift gears from legacy vulnerabilities to open-source repos, DevOps tools, and
software tampering.

(Source: https://develop.secure.software/6-reasons-software-security-teams-need-to-go-beyond-vulnerability-response, august 2022)

16 B DistriN=t

https://develop.secure.software/6-reasons-software-security-teams-need-to-go-beyond-vulnerability-response

Increasing awareness

Great tools, but address the symptoms, not the root cause

NnpM security advisories GitHub security alerts

Security advisories L2 [3)= O > -0 28 commits I 1 branch M 0 packages O 2 releases 22 2 contributors g MIT

Advisory Date of advisory Status

. L We found potential security vulnerabilities in your dependencies. . .
Cross-Site Scripting 4 P ty : y = View security alerts

bootstrap-select May 20th. 2020 Only the owner of this repository can see this message.

Cross-Site Scripting
@toast-ui/editor May 20th, 2020

e Snyk vulnerability DB

snyk Test Features v Vulnerability DB Blog Partners Pricing Docs About LogIn Sign Up

"
I I p I I I au d I-t Vulnerability DB » [@ npm > lodash

@ Prototype Pollution

¢ run RIS E] to resolve 1 vulnersbility Affecting lodash package, ALL versions

O

Prototype Pollution

CVSS SCORE

SEMVER WARNING: Recommended @

Report new vulnerabilities

ATTACK VECTOR ATTACK COMPLEXITY
Do your applications use this vulnerable package? Test your applications

| Network | Low
Overview
PRIVILEGES REQUIRED USER INTERACTION
lodash & is a modern JavaScript utility library delivering modularity, performance, & extras.
Low None
Affected versions of this package are vulnerable to Prototype Pollution. The function zipobjectDeep can be tricked into adding or

modifying properties of the Object prototype. These properties will be present on all objects.

17 B DistriN=t

Avolding Interference Is the name of the game

» Shield important resources/APls from modules that don’t need access

» Apply Principle of Least Authority (POLA) to application design

Browser env Server env Blockchain env

Smart contract dapp

Webpage Web server app

- | | (]| | (]

Tokens Keys

Cookies Requests Files

= [/l AGORIC

18 B DistriN=t

Part ||
The Principle of Least Authority, by example

19 B DistriN=t

Running example: apply POLA to a basic shared log

We would like Alice to only write to the log, and Bob to only read from the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
constructor() {
this.messages_ = [];
¥
write(msg) { this.messages_.push(msg); }
read() { return this.messages_; }

¥

let log = new Log();
alice(log);
bob(log);

20 B DistriN=t

Running example: apply POLA to a basic shared log

If Bob goes rogue, what could go wrong?

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
constructor() {
this.messages_ = [];
¥
write(msg) { this.messages_.push(msg); }
read() { return this.messages_; }

¥

let log = new Log();
alice(log);
bob(log);

21 B DistriN=t

Bob has way too much authority!

If Bob goes rogue, what could go wrong?

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistﬁﬁc£0p<> { // Bob can delete the entire log
this.messages_ = []; log.read().length = @
¥

// Bob can replace the ‘write’ function

log.write = function(msg) {
console.log(“I’m not logging anything”);

3

// Bob can replace the Array built-ins

Array.prototype.push = function(msg) {
console.log(“I’m not logging anything”);

¥

write(msg) { this.messages_.push(msg); }
read() { return this.messages_; }

¥

let Tog = new Log();
alice(log);
bob(log);

22 B DistriN=t

How to solve “prototype poisoning” attacks®

Load each module in its own environment,
with its own set of “primordial” objects

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistﬁﬁc§0p<> { // Bob can delete the entire log
this.messages_ = []; log.read().length = @
¥

write(msg) { this.messages_.push(msg); } // Bob can replace the ‘write’ function

! . log.write = function(msg) {
, read() { return this.messages_; } console.log(“I’m not logging anything”);

// Bob can replace the Array built-ins

let log = new Log(Q); Array.prototype.push = function(msg) {

alice(log);
bob(log);

console.log(“I’m not logging anything”);
3

23 B DistriN=t

Prerequisite: isolating Javascript modules

» Today: JavaScript offers no standardized isolation
mechanisms

| o | | Environment
» Lots of environment-specific isolation mechanisms,
but non-portable and ill-defined: JS app
* Web Workers: forced async communication,
no shared memory

* iframes: mutable primordials, “identity Shared resources
discontinuity”

* hodejs vimn module: same issues

24 B DistriN=t

ShadowRealms (TC39 Stage 3 proposal)

Intuitions: “iframe without DOM”, “principled version of node’s vm module”

Host environment

ShadowRealm ShadowRealm

-, globalThis

globalThis

Primordials: built-in ObjeCtS Ike Object, Object.prototype, Array, Function, Math, JSON, €1C. .
25 EEEI DistriN=t

Compartments (1C39 Stage 1 proposal)

Each Compartment has its own global object but shared (immutable) primordials.

Host environment

ShadowRealm ‘Af‘f‘ay ‘ Math | 1 ShadowRealm

Compartment Compartment

globalThis

Deep-frozen
Objects

Deep-frozen
Primordials

Primordials: built-in ObjeCtS Ike Object, Object.prototype, Array, Function, Math, JSON, E€1C. .
26 EEE DistriN=t

Hardened JavaScript Is a secure subset of standard Javascript

Full JavaScript

Key Idea: code running in

4 P
Hardened JavaScript harderepl JS can only affect
N " the outside world through
* N0 mutable primordials : . C
* no powerful glolbal objects by default ObJeCtS (Capablht GS) exphcmy
* can create Compartments granted to it from outside.

JSON

(inspired by the diagram at https://github.com/Agoric/Jessie)

_

27 B DistriN=t

https://github.com/Agoric/Jessie

L avaMoat

» CLI tool that puts each package dependency into its own

hardened JS sandbox environment

» Auto-generates config file indicating authority needed by

each package

* Plugs into build tools like Webpack and Browserify

https://github.com/l.avaMoat/lavamoat

ot

28

"stream-http"
"globals"™
"Blob": true
"MSStreamReader"”
"ReadableStream"
"VBArray": true
"XDomainRequest"
"XMLHttpRequest"
"fetch": true

"packages”

"buffer": true

"inherits": true
"process": true
"readable-stream”
"to-arraybuffer”
"url": true

"xtend": true

true

true

true

true

"location.protocol.search": true

"builtin-status-codes": true

true

true

B DistriN=t

https://github.com/LavaMoat/lavamoat

L avaMoat enables more focused security reviews

—Xposure to package dependencies Exposure to package dependencies
without LavaMoat sandboxing with LavaMoat sandlboxing
® \ .0 . ° ! .
o ©® ° Py e © o
. ® ® P
° 3. .9 ~ : o K A o %
. A ::" %o % ® o. i .:,':: .o
o o ., ‘..o'. .00. ° '.j.g 0.." “:.o
. . ..0. %° : ® : o ®‘. ¢ ® P .
¢ o. Tet .:... C o * .::‘::‘
o ®e ¢ © 0. o *

https://github.com/l avaMoat/lavamoat

29 B DistriN=t

https://github.com/LavaMoat/lavamoat

Back to our example

With Alice and Bob’s code running in their own
Compartment, we mitigate the poisoning attack

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistgﬁcior() { // Bob can delete the entire log
this.messages_ = []; log.read().length = 0
3

// Bob can replace the ‘write’ function
log.write = function(msg) {
console.log(“I’m not logging anything”);

write(msg) { this.messages_.push(msg); }
read() { return this.messages_; }

; }

: | i T
Let log = new Log(); Array-prototype push=Frcroalmsg)—1
alice(log); ' 1 . : A .
bob(log); 1 . ,

30 |KULEUVEN DiStﬂN:t

One down, three to go

POLA: we would like Alice to only write to the log,
and Bob to only read from the log.

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistigcior() . // Bob can delete the entire log
-ru log.read().length = 0
this.messages_ = [];
ks

// Bob can replace the ‘write’ function

write(msg) { this.messages_.push(msg); } log.write = function(msg) {

read() { return this.messages_; }

¥

console.log(“I’m not logging anything”);
3

let 1log = new Log();
alice(log);
bob(log);

31 B DistriN=t

Make the log’s interface tamper-proof

Object.freeze makes property bindings (not
their values) immutable

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistggcﬁor() { // Bob can delete the entire log
) log.read().length = 0
this.messages_ = [];
}

// Bob can replace the ‘write’ function
log.write = function(msg) {
console.log(“I’m not logging anything”);

¥

write(msg) { this.messages_.push(msg); }
read() { return this.messages_; }

¥

let log = Object.freeze(new Log());
alice(log);
bob(log);

3 B DistriN=t

Make the log’s interface tamper-proof. Oops.

Functions are mutable too. Freeze doesn’t
recursively freeze the object’s functions.

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistggcior() g // Bob can delete the entire log
. log.read().length = 0
this.messages_ = [];
1 . .
. . //—Bob—can—replace—the “write’ function
write(msg) { this.messages_.push(msg); } . .
read() { return this.messages_; } g- C ks HSG E. .
} } * ’
2$$C22%0339bject.Freeze(new Log()); // Bob can still modify the write function
bob(10g); log.write.apply = function() { “gotcha” };

33 B DistriN=t

Make the log’s interface tamper-proof

HardeneddJS provides a harden function that
“deep-freezes” an object

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistggcior() g // Bob can delete the entire log
. log.read().length = 0
this.messages_ = [];
1 . .
. . //—Bob—can—replace—the “write’ function
write(msg) { this.messages_.push(msg); } . .
read() { return this.messages_; } g- C ks HSG E. .
} } * ’
Eigclzgoz)harden(new Log()); // Bob can still modify the write function
bob(10g); log.write.apply = function() { “gotcha” };

34 B DistriN=t

Two down, two to go

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistggcior() g // Bob can delete the entire log
-ru log.read().length = 0
this.messages_ = [];
} ¢ .) .
. . //—Bob—can—replace—the “write’ function
write(msg) { this.messages_.push(msg); } el .
read() { return this.messages_; } g- C ks Sz E. N
} : | ’
let 1Tog = harden(new Log());
alice(log); - _ 7 » » 7.
bob(log); ' ' - ’

35 B DistriN=t

Two down, two to go

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistggcior() g // Bob can delete the entire log
-ru log.read().length = 0
this.messages_ = [];
} ¢ .) .
. . //—Bob—can—replace—the “write’ function
write(msg) { this.messages_.push(msg); } el .
read() { return this.messages_; } g- C ks Sz E. N
} : | ’
let 1Tog = harden(new Log());
alice(log); - _ 7 » » 7.
bob(log); ' ' - ’

36 B DistriN=t

Don’t share access to mutaple internals

- Modify read() to return a copy of the mutable state.

» Even better would be to use a more efficient copy-on-write or
“persistent” data structure (see immutable-js.com)

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistggcior() g // Bob can delete the entire log
) log.read().length = 0
this.messages_ = [];
1 . .
. . //—Bob—can—replace—the “write’ function
write(msg) { this.messages_.push(msg); } . .
read() { return [...this.messages_]; } g- C ks HSG E. .
} } ’ ’
let log = harden(new Log()); '/ Bl i1 P e £ .
alice(log); : : ‘ » 1.
bob(log); ' ' - ’

37 B DistriN=t

http://immutable-js.com

Three down, one to go

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log { .
constructor() { i - 9
this.messages_ = []; ' ' -
ks . .
: . A—Bob—ecan—replace—thewrite’ function
write(msg) { this.messages_.push(msg); } el .
read() { return [...this.messages_]; } g- C ks HSG E. N
}) ' ’
let 1Tog = harden(new Log());
alice(log); . - YTy ERS ;E : 5; 5.
bob(log); ' ' B ’

38 B DistriN=t

Three down, one to go

» Recall: we would like Alice to only write to the log, and Bob
to only read from the log.

» Bob receives too much authority. How to limit?

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
constructor() {
this.messages_ = [];
ks . .
: . A—Bob—ecan—replace—thewrite’ function
write(msg) { this.messages_.push(msg); } el .
read() { return [...this.messages_]; } g- C ks HSG E. N
}) ' ’
let 1Tog = harden(new Log()); '/ Bl 17 5 Ey 4] . : .
alice(log); : a : G » .
bob(log); ' ' B ’

39 B DistriN=t

Pass only the authority that Bolb needs.

Just pass the write function to Alice and the read
function to Bob. Can you spot the bug?

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log { .
constructor() { 9
this.messages_ = []; ' ' -
3 . .
: . A—Bob—ecan—replace—thewrite’ function
write(msg) { this.messages_.push(msg); } . .
read) { return [...this.messages_]; } g- C ks A5G E. .
}) ' ’
let log = harden(new Log());
alice(log.write); . SRR ;E | E; 5.
bob(log.read); : - = 5

40 B DistriN=t

Pass only the authority that Bolb needs.

To avoid, must pass “bound” functions

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log { .
constructor() { - 9
this.messages_ = []; ' ' -
} ¢ .) .
write(msg) { this.messages_.push(msg); } el prace—the—write—runction
read() { return [...this.messages_]; } g- C ks HSG E. N
}) ' ’

let log = harden(new Log());

alice(log.write.bind(log)); 2 2
bob(log.read.bind(log)); ' ' = ,

41 B DistriN=t

Success! We thwarted all of Evil Bob’s attacks.

import * as alice from "alice.js"; // n bob.;; :
import * as bob from “bob.js"; . “3, . 9”
class Log { .
constructor() { - 9
this.messages_ = []; ' ' -
} . .
: . A—Bob—ecan—replace—thewrite’ function
write(msg) { this.messages_.push(msg); } el .
read() { return [...this.messages_]; } g- C ks HSG E. N
Iy 1 ' ’

let log = harden(new Log());

alice(log.write.bind(log)); - :
bob(log.read.bind(log)); ' ' ,

42 B DistriN=t

s there a better way to write this code?

The burden of correct use Is on the client
of the class. Can we avoid this?

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
constructor() {
this.messages_ = [];
Iy
write(msg) { this.messages_.push(msg); }
read() { return [...this.messages_]; }

¥

let log = harden(new Log());
alice(log.write.bind(log));
bob(log.read.bind(log));

43 B DistriN=t

Use the Function as Object pattern

» A record of closures hiding state is a fine representation of an
object of methods hiding instance vars

 Pattern long advocated by Doug Crockford instead of using
classes or prototypes

import * as alice from "alice.js"; import * as alice from "alice.js";
import * as bob from “bob.js"; import * as bob from “bob.js";
class Log { function makeLog() {
constructor() { const messages = [];
this.messages_ = []; function write(msg) { messages.push(msg); }
1 function read() { return [...messages]; }
write(msg) { this.messages_.push(msg); } return harden({read, write});
read() { return [...this.messages_]; } }
ks
let log = harden(new Log()); let log = makelLog();
alice(log.write.bind(log)); alice(log.write);
bob(log.read.bind(log)); bob(log.read);

(See also https://martinfowler.com/bliki/FunctionAsObject.html)

44 B DistriN=t

https://martinfowler.com/bliki/FunctionAsObject.html

Use the Function as Object pattern

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makeLog();
alice(log.write);
bob(log.read);

45 |KULEUVEN DiStﬂN:t

What if Alice and Bob need more authority”?

If over time we want to expose more functionality to Alice and
Bob, we need to refactor all of our code.

import * as alice from "alice.js"; import * as alice from "alice.js";
import * as bob from “bob.js"; import * as bob from “bob.js";

function makeLog() { function makeLog() {
const messages = []; const messages = [];

function write(msg) { messages.push(msg); } function write(msg) { messages.push(msg); }

function read() { return [...messages]; } function read() { return [...messages]; }
return harden({read, write}); function size() { return messages.length(); }
I return harden({read, write, size});
¥
let log = makeLogQ); let log = makelLog();
alice(log.write); alice(log.write, log.size);
bob(log.read); bob(log.read, log.size);

46 B DistriN=t

EXpose distinct authorities through facets

Easily deconstruct the API of a single powerful object into
separate interfaces by nesting objects

import * as alice from "alice.js"; import * as alice from "alice.js";
import * as bob from “bob.js"; import * as bob from “bob.js";

function makeLog() { function makeLog() {
const messages = []; const messages = [];

function write(msg) { messages.push(msg); } function write(msg) { messages.push(msg); }

function read() { return [...messages]; } function read() { return [...messages]; }
function size() { return messages.length(); } function size() { return messages.length(); }
return harden({read, write, size}); return harden({
1 reader: {read, size},
writer: {write, size}
let log = makeLog(); ;g
alice(log.write, log.size); }

bob(log.read, log.size);
let log = makeLog();
alice(log.writer);

bob(log.reader); v
47 EEI DistriN=t

Demo

https://github.com/tvcutsem/lavamoat-demo

48 B DistriN=t

End of Part |: recap

» Modern JS apps are composed from many Environment
modules. You can’t trust them all.

JS app

» Traditional security boundaries don’t exist

between modules. Compartments add basic
Isolation.

» |Isolated modules must still interact! Shared resources

* Fine-grained access control needed to
compose functionality from untrusted modules
IN a least-authority manner

49 B DistriN=t

Part |l
The object-capability model of access control

50 B DistriN=t

Access control: basic terminology

subject

authority

read

invocation

\/
Y

/etc/passwd

resource

51

Access Matrix

/etc/passwd | /u/markm/foo | /etc/motd
Alice {read} {write} {}
Bob {read} {3 {read}
Carol {read} {write} {read}
has what over which ?

(source: Miller et al. “Capability myths demolished”, 2003)

B DistriN=t

Principle of Least Authority (POLA): a tale of two copies

cp /home/tom/in.txt /home/tom/out.txt cat < /home/tom/in.txt > /home/tom/out.txt

52 B DistriN=t

Access control: two alternative views

Access control lists (ACLS)

Access control organised

around identity.

)

Bob

L

* R
» R

N\

2 R

D

/etc/passwd

[
b=

\

) (

V4

°o||d
= ||

(

access control list

/u/markm/foo

1
A}
.
‘<

/etc/motd

53

Capabillities (caps)

Access control organised around
specific acts of authorization.

/\
R e >
/etc/passwd
We
N
()
R ¢
Bob /u/markm/foo
R &
NI

R«
w e /etc/motd
o, >

capability list

(source: Miller et al. “Capability myths demolished”, 2003) KU LEUVEN D]’St” N=t

Access control: two alternative views

Access control lists (ACLS)

Access control organised

around identity.

e

Bob

L

* R
» R

N\

» R

D

/etc/passwd

||
b=

\

) (

V4

°o||d
= ||

(

/u/markm/foo

-
-
-
-
-

access control list

Despite the apparent symmetry, these models are not equivalent!

/etc/motd

54

Capabillities (caps)

Access control organised

around

specific acts of authorization.

/\
R e >
/etc/passwd
W e
N
)
R ¢
Bob /u/markm/foo
R &l
NI

/etc/motd

R
w e
R e >

capability list

(source: Miller et al. “Capability myths demolished”, 2003)

B DistriN=t

Capabillity systems excel at delegating authority

Bob
o A capability both designates a

resource and authorises some
kKind of access to it.

‘@4 The two are inseparable.

Granovetter Diagram

55 (source: Miller et al. “Capability myths demolished”, 2003) m Distn N -t

What are object-capabilities?

* In a memory-safe programming language, an object-capabillity is simply an unforgeable
reference (a pointer) to an object (or a function)

» The designated resource = the object being pointed to

» EXxercising authority = invoking one of the designated object’s public methods

f?le m /etc/passwd // alice executes:
} - file.read()

an object an object reference a method call another object
(aka “a pointer”)

56 (source: Miller et al. “Capability myths demolished”, 2003) m Dist” N -t

When is a language an object-capability language”

1. The language must be memory-safe: object pointers are unforegeable

- Cannot typecast an int to a pointer, cannot randomly access heap memory, ...
2. The language must offer strong encapsulation

» Objects need a way to privately store pointers to other objects
3. The language must not provide access to undeniable (ambient) authority

- Examples of undeniable authority: the ability to import arbitrary modules, the abillity to
update mutable global variables

4. The only way to delegate authority is by sharing a pointer to an object

» “Only connectivity begets connectivity”

57 B DistriN=t

"Only connectivity begets connectivity”

Three simple rules that describe how authority can be acquired in a capability-secure system:

// adlice executes:

Creation: e.g. alice creates carol herself let carol = makeCarol()
Bob

Endowment: e.g. at creation, alice Is 1/ alice’s constructor:
endowed with authority to access carol function makeAlice(carol) {.3} @‘

_ // alice executes:
Transfer: e.qg. alice transfers carol to bob bob . foo(carol)

58 B DistriN=t

Considerations when delegating authority using capabilities

When Alice delegates authority to Bob, she may want

to limit the authority given to Bob (attenuation)
Bob .

Bob may also want to combine the authority given to

him with his other authorities to gain additional @
authorities (rights amplification)

59 EEE DistriN=t

Part [V
Object-capability Patterns

60 B DistriN=t

Design Patterns ("Gang of Four”, 1994)

@

Design Patterns

Elements of Reusable
Object-Oriented,Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

+Visitor

* Factory

- Observer
- Singleton
- State

U
\J
W
AI
o
'

-
<
W
—
rm
o

~
O
~
hI
N
m
W
w
~
N
—
)
.AI
.
<
B,
—~
—
-
)
w
m
L

61 B DistriN=t

esign Patterns for robust composition (Mark S. Miller, 2006

- Taming

Towards a Unified Approach to Access Control and Concurrency Control

by

Mark Samuel Miller [F E 1 (: e't
[|
A dissertation submitted to Johns Hopkins University in conformity with the . e a e r n S e a e r a I r
requirements for the degree of Doctor of Philosophy. Ll

Baltimore, Maryland

o
Copyright (© 2006, Mark Samuel Miller. All rights reserved.

Permission is hereby granted to make and distribute verbatim copies of this document
without royalty or fee. Permission is granted to quote excerpts from this documented

provided the original source is properly cited. o

http://www.erights.org/talks/thesis/markm-thesis.pdf

62 B DistriN=t

Further limiting Bob'’s authority

We would like to give Bob only temporary read
access to the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makeLog();

alice(log.write);
bob(log.read);

63 |KULEUVEN DiStﬂN:t

Use caretaker to insert access control logic

We would like to give Bob only temporary read
access to the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let l1log = makeLog();

let [rlog, revoke] = makeRevokablelLog(log);
alice(log.write);

bob(rlog.read);

64 B DistriN=t

Use caretaker 1o insert access control logic

We would like to give Bob only temporary read
access to the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makeLog();

let [rlog, revoke] = makeRevokablelLog(log);
alice(log.write);

bob(rlog.read);

// to revoke Bob’s access:
revoke();

65 B DistriN=t

Use caretaker 1o insert access control logic

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makeLog();
let [rlog, revoke] =|makeRevokablelLog(log);
alice(log.write);

bob(rlog.read);

// to revoke Bob’s access:
revoke();

66

function makeRevokablelLog(log) {
function revoke() { log = null; };
let proxy = {
write(msg) { log.write(msg); }
read() { return log.read(); }
b
return harden([proxy, revoke]);

¥

B DistriN=t

A caretaker IS Just a proxy object

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makeLog();
let [rlog, revoke] =|makeRevokablelLog(log);
alice(log.write);

bob(rlog.read);

// to revoke Bob’s access:
revoke();

67

function makeRevokablelLog(log) {
function revoke() { log = null; };
let proxy = {
write(msg) { log.write(msg); }
read() { return log.read(); }
b
return harden([proxy, revoke]);

¥

B DistriN=t

A caretaker IS Just a proxy object

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makeLog();
let [rlog, revoke] =|makeRevokablelLog(log);
alice(log.write);

bob(rlog.read);

// to revoke Bob’s access:
revoke();

68

function makeRevokablelLog(log) {
function revoke() { log = null; };
let proxy = {
write(msg) { log.write(msg); }
read() { return log.read(); }
b
return harden([proxy, revoke]);

¥

B DistriN=t

Taming Is the process of restricting access to powerful APIs

» Expose powerful objects through restrictive proxies to third-party code

 E.g. Alice might give Bob read-only access to a specific subdirectory of her file system

Host resources

69 B DistriN=t

Taming Is the process of restricting access to powerful APIs

» Example: how Google Caja limits access to the browser DOM

defensive Caja taming of <div> in host page
objects defensive objects
Nifty Social Site
Caja DOM boundary
T]/within host <div>
: \ i
game code from ! \ . .
other sources guest page
— host page
buggy or
malicious game : @
HTTP connection
Caja server
Caja subsystem

(source: Google Caja documentation: https://developers.google.com/caja/docs/about)

70 EEE DistriN=t

https://developers.google.com/caja/docs/about

Taming Is the process of restricting access to powerful APIs

Potential hazard: the taming proxy must ensure it does not “leak™ any host
resources via its restricted API.

Host resources

71 B DistriN=t

Bob may still access the log’s messages Bob

- let msgs = read()

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let 1og = makeLog();

let [rlog, revoke] = makeRevokablelLog(log);
alice(log.write);

bob(rlog.read);

function bob(log) {
let msgs = log.read();

// to revoke Bob’s access:
revoke();

72 B DistriN=t

Membranes are generalized caretakers Bob

- let msgs = read()

Proxy any object reachable from the log

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }

return harden({read, write}); .
1 function bob(log) {

let msgs = log.read();

let log = makelLog();

let [rlog, revoke] = makeRevokableMembrane(log); ¥
alice(log.write);

bob(rlog.read);

73 B DistriN=t

Membranes are generalized caretakers Bob

- let msgs = read()

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }

return harden({read, write}); .
1 function bob(log) {

let msgs = log.read();

let log = makelLog();

let [rlog, revoke] = makeRevokableMembrane(log); ¥
alice(log.write);

bob(rlog.read);

// to revoke Bob’s access:
revoke();

74 B DistriN=t

Membranes are generalized caretakers Bob

- let msgs = read()

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }

return harden({read, write}); .
1 function bob(log) {

let msgs = log.read();

let log = makelLog();

let [rlog, revoke] = makeRevokableMembrane(log); ¥
alice(log.write);

bob(rlog.read);

// to revoke Bob’s access:

revoke(); Deep dive article at tvcutsem.github.io/membranes

75 B DistriN=t

http://tvcutsem.github.io/membranes

Compartments vs Membranes

« Compartments manage initial authority. Membranes manage subsequent interactions.

Host environment

76 B DistriN=t

Compartments vs Membranes

« Compartments manage initial authority. Membranes manage subsequent interactions.

Host environment

77 B DistriN=t

Compartments vs Membranes

- Compartments manage initial authority. Membranes manage subsequent interactions.

Host environment

Rea‘m ‘Ar‘r‘ay ‘ Math

Compartment Compartment

Membrane

78 B DistriN=t

Another exercise in POLA

* Eve needs access to the log as a whole, but we don’t want her to read or modify the
content of the log

import * as alice from "alice.js";
import * as bob from “bob.js";
import * as eve from “eve.js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

h

let 1log = makeLog();

alice(log.write);
bob(log.read);
eve(log);

79 B DistriN=t

Sealer/unsealer pairs

» A sealer/unsealer pair enables the confidentiality and integrity properties of encryption, but in-
process and without any actual cryptography

import * as alice from "alice.js";
import * as bob from “bob.js";
import * as eve from “eve.js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

h

let log = makeLog(Q);

let [seal, unseal] = makeSealerUnsealerPair();
alice((msg) => log.write(seal(msg));

bob(() => log.read().map(msg => unseal(msg));
eve(log);

80 |KULEUVEN DiStﬂN:t

Sealer/unsealer pairs

» seal “encrypts” objects, unseal “decrypts” objects

import * as alice from "alice.js";
import * as bob from “bob.js";
import * as eve from “eve.js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

h

let log = makeLog(Q);

let [seal, unseal] = makeSealerUnsealerPair();
alice((msg) => log.write(seal(msg));

bob(() => log.read().map(msg => unseal(msg));
eve(log);

seal+write

81 B DistriN=t

Sealer/unsealer pairs

» seal “encrypts” objects, unseal “decrypts” objects

import * as alice from "alice.js";
import * as bob from “bob.js";
import * as eve from “eve.js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

h

let log = makeLog(Q);

let [seal, unseal] = makeSealerUnsealerPair();
alice((msg) => log.write(seal(msg));

bob(() => log.read().map(msg => unseal(msg));
eve(log);

seal+write read+unseal

82 B DistriN=t

This is called “rights amplification”. It's a useful POLA building block.

» Only code that has access to both the unseal function
and the original object can access the sealed value

import * as alice from "alice.js", Embeddlng environment

import * as bob from “bob.js";
import * as eve from “eve.js";

function makelLogger() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

h

let 1log = makelLogger();

let [seal, unseal] = makeSealerUnsealerPair();
alice((msg) => log.write(seal(msg));

bob(() => log.read().map(msg => unseal(msg));
eve(log);

seal+write read+unseal

83 B DistriN=t

Object-capability patterns are used in industry

B® METAMASK

[E)ddable

Moddable XS MetaMask Snaps
Uses Compartments for safe end-user Uses LavaMoat to sandbox plugins
scripting of loT products In their crypto web wallet
Google Caja Mozilla Firefox
Uses taming for safe html Uses membranes to isolate
embedding of third-party content site origins from privileged JS code

84

= [/ AGORIC

Agoric Zoe

Uses Hardened JS for writing
smart contracts and Dapps

salesforce

Salesforce Lightning

Uses realms and membranes to
IsSolate & observe Ul components

B DistriN=t

Summary

85 B DistriN=t

This Lecture

Browser env

Webpage

- Part [: why application security Is
critical to JavaScript applications

Cookies

- Part Il: the Principle of Least Authority,
by example

- Part lll: the object-capability model of
access control

Design Patterns |8
Elements qf Reusable Z

- Part V. object-capabillity patterns

Robust Composition:

A dissertation submitted to Johas Hopkins University in conformity with the

May, 2006

86

B DistriN=t

1he take-away messages

* Modern applications are composed from many modules.

You can’t trust them all.
* Apply the “principle of least authority” to limit trust.
- Isolate modules (Hardened JS & Lavamoat)

» Let modules interact safely using patterns such as
facets, caretaker, membranes, taming, ...

* Understanding these patterns is important in a world of
> 2,000,000 NPM modules.

 Even more critical in a Web3 world where code starts to
directly interact with digital assets

87

Environment

JS app

Shared resources

B DistriN=t

Appendix

88 B DistriN=t

Further Reading

- Mark Miller, Ka-Ping Yee, Jonathan Shapiro, “Capability Myths Demolished”: https://srl.cs.jhu.edu/pubs/SRIL2003-02.pdf

- Compartments: https://qithub.com/tc39/proposal-compartments and https://github.com/Agoric/ses-shim

- ShadowRealms: https://github.com/tc39/proposal-realms and github.com/Agoric/realms-shim

- Hardened JS (SES): https://github.com/tc39/proposal-ses and https://qithub.com/endojs/endo/tree/master/packages/ses

-+ Subsetting ECMAScript: https://github.com/Agoric/Jessie

+ Kris Kowal (Agoric): “Hardened JavaScript” https://www.youtube.com/watch?v=Rood/SIL-DE

- Making Javascript Safe and Secure: Talks by Mark S. Miller (Agoric), Peter Hoddie (Moddable), and Dan Finlay (MetaMask): https://www.youtube.com/playlist?
list=PL zDw4 TTug5025J5M3fwErKImrOrgGik|

- Moddable: XS: Secure, Private JavaScript for Embedded IoT: https://blog.moddable.com/blog/secureprivate/

- Membranes in JavaScript: tvcutsem.qgithub.io/js-membranes and tvcutsem.github.io/membranes

- Caja: https://developers.google.com/caja

- Chip Morningstar, “What are capabilities”: http://habitatchronicles.com/2017/05/what-are-capabilities/

- Why KeyKOS is fascinating: https://github.com/void4/notes/issues/41

89 B DistriN=t

https://srl.cs.jhu.edu/pubs/SRL2003-02.pdf
https://github.com/tc39/proposal-compartments
https://github.com/Agoric/ses-shim
https://github.com/tc39/proposal-realms
http://github.com/Agoric/realms-shim
https://github.com/tc39/proposal-ses
https://github.com/endojs/endo/tree/master/packages/ses
https://github.com/Agoric/Jessie
https://www.youtube.com/watch?v=RoodZSIL-DE
https://www.youtube.com/playlist?list=PLzDw4TTug5O25J5M3fwErKImrjOrqGikj
https://www.youtube.com/playlist?list=PLzDw4TTug5O25J5M3fwErKImrjOrqGikj
https://blog.moddable.com/blog/secureprivate/
http://tvcutsem.github.io/js-membranes
http://tvcutsem.github.io/membranes
https://developers.google.com/caja
http://habitatchronicles.com/2017/05/what-are-capabilities/
https://github.com/void4/notes/issues/41

Acknowledgements

- Mark S. Miller (for the inspiring and ground-breaking work on Object-capabilities, Robust Composition, E, Caja,
JavaScript and Secure ECMAScript)

- Marc Stiegler’s “PictureBook of secure cooperation” (2004) is a great source of inspiration for patterns of robust
composition

» Doug Crockford’s “JdS: the Good Parts” and “How JS Works” books provide a highly opinionated take on how to write
clean, good, robust JavaScript code

- Kate Sills and Kris Kowal at Agoric for helpful comments on earlier versions of these slides
- The Cap-talk and Friam community for inspiration on capability-security and capability-secure design patterns

- TC39 and the es-discuss community, for the interactions during the design of ECMAScript 2015, and in particular all the
feedback on the Proxy API

- The SES secure coding guide: https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-
quide.md

90 B DistriN=t

https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md
https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md
https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md
https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md

