
A gentle introduction to Digital Currencies and Smart Contracts

Tom Van Cutsem


IFIP WG2.16 Programming Language Design Meeting 
January 2021

twitter.com/tvcutsemgithub.com/tvcutsemtvcutsem.github.io be.linkedin.com/in/tomvc

https://be.linkedin.com/in/tomvc
https://github.com/tvcutsem
https://twitter.com/tvcutsem
https://tvcutsem.github.io


“Money is the most universal and most efficient 
system of mutual trust ever devised.”

- Yuval Noah Harari 
“Sapiens: a brief history of humankind”



In most forms of money, trust is centralised

Bank

clearing 
house Bank



Can trust be decentralised?

Bank

clearing 
house Bank



Can trust be decentralised?

Satoshi Nakamoto 
Bitcoin (2009)



Key technical innovation: blockchain

• Replace central clearing house by a public, replicated, tamper-resistant 
ledger 

• Validators group transactions in “blocks”, “chained” together into a linear 
sequence using cryptographic hashes, secured using “proof of work”

Block n
Tx Tx nonce

Block n+1

hash hashTransaction

signed, Alice

I hereby transfer 
1 bitcoin to Bob H(n-1) Tx Tx nonceH(n) Tx



What other applications do blockchains enable?

Vitalik Buterin 
Ethereum (2014)



What other applications do blockchains enable?

Vitalik Buterin 
Ethereum (2014)

Nick Szabo 
Smart Contracts (1996)



What is a smart contract?

A software program that automatically moves digital assets 
according to arbitrary pre-specified rules

(source: V. Buterin, Ethereum White Paper, 2014)



Smart contracts: basic principle

1. insert coins

2. dispense drink

An automaton that can trade physical assets



Smart contracts: basic principle

1. insert digital coins

2. dispense other digital assets 
or electronic rights

An automaton that can trade digital assets

code



But who should we trust to faithfully execute the code?

An automaton that can trade digital assets

code

1. insert digital coins

2. dispense other digital assets 
or electronic rights



Delegate trust to a decentralised network

A replicated automaton that can trade digital assets

1. insert digital coins

2. dispense other digital assets 
or electronic rights

replicated code



A decentralized “world computer” to execute smart contracts



Each transaction updates the virtual computer’s replicated state

T0

S[0] S[1]

deposit 2 coins into 
Bob’s contract

Bob’s contract

signed, Alice

network of validator nodes



Incoming transactions are sequenced into blocks

T0

S[0] S[1]

T1

S[2]

T2

S[3]

T0 T1
T2 Transaction pool

network of validator nodes



A blockchain ensures the network agrees on a single global order

T0

Block n

hash

h(n-1)

S[0] S[1]

T0 T1 T2

Block n+1

hash

h(n)

T1

S[2]

T2

S[3]

S[3]

T0 T1
T2

network of validator nodes



Contracts are compiled into bytecode for a simple stack machine

solidity source code

.sol

Solidity compiler

Ethereum Virtual Machine

EVM bytecode

Bob’s contract

network of validator nodes



Smart contracts on Ethereum: an example

contract TomCoin { 
    
    address public minter; 
    mapping (address => uint) public balances; 

    constructor() public { 
        minter = msg.sender; 
    } 

    function mint(address receiver, uint amount) public { 
        if (msg.sender != minter) return; 
        balances[receiver] += amount; 
    } 

    function send(address receiver, uint amount) public { 
        if (balances[msg.sender] < amount) return; 
        balances[msg.sender] -= amount; 
        balances[receiver] += amount; 
   } 
}

(source: official Solidity documentation, https://docs.soliditylang.org )

.sol

https://docs.soliditylang.org/


Smart contracts on Ethereum: an example

contract TomCoin { 
    
    address public minter; 
    mapping (address => uint) public balances; 

    constructor() public { 
        minter = msg.sender; 
    } 

    function mint(address receiver, uint amount) public { 
        if (msg.sender != minter) return; 
        balances[receiver] += amount; 
    } 

    function send(address receiver, uint amount) public { 
        if (balances[msg.sender] < amount) return; 
        balances[msg.sender] -= amount; 
        balances[receiver] += amount; 
   } 
}

Define a new contract.



Smart contracts on Ethereum: an example

contract TomCoin { 
    
    address public minter; 
    mapping (address => uint) public balances; 

    constructor() public { 
        minter = msg.sender; 
    } 

    function mint(address receiver, uint amount) public { 
        if (msg.sender != minter) return; 
        balances[receiver] += amount; 
    } 

    function send(address receiver, uint amount) public { 
        if (balances[msg.sender] < amount) return; 
        balances[msg.sender] -= amount; 
        balances[receiver] += amount; 
   } 
}

Define the contract state. 

All state is replicated and publicly 
persisted on the blockchain.



Smart contracts on Ethereum: an example

contract TomCoin { 
    
    address public minter; 
    mapping (address => uint) public balances; 

    constructor() public { 
        minter = msg.sender; 
    } 

    function mint(address receiver, uint amount) public { 
        if (msg.sender != minter) return; 
        balances[receiver] += amount; 
    } 

    function send(address receiver, uint amount) public { 
        if (balances[msg.sender] < amount) return; 
        balances[msg.sender] -= amount; 
        balances[receiver] += amount; 
   } 
}

Define a constructor. 

The constructor is run during 
creation of the contract and cannot 
be called afterwards.



Smart contracts on Ethereum: an example

contract TomCoin { 
    
    address public minter; 
    mapping (address => uint) public balances; 

    constructor() public { 
        minter = msg.sender; 
    } 

    function mint(address receiver, uint amount) public { 
        if (msg.sender != minter) return; 
        balances[receiver] += amount; 
    } 

    function send(address receiver, uint amount) public { 
        if (balances[msg.sender] < amount) return; 
        balances[msg.sender] -= amount; 
        balances[receiver] += amount; 
   } 
}

Define functions. 

Can be called by clients or contracts. 

Can update the contract’s state. 

Functions are “called” by sending a 
transaction. 

Each transaction is cryptographically 
signed with the sender’s identity.



Smart contracts on Ethereum: an example

contract TomCoin { 
    
    address public minter; 
    mapping (address => uint) public balances; 

    constructor() public { 
        minter = msg.sender; 
    } 

    function mint(address receiver, uint amount) public { 
        if (msg.sender != minter) return; 
        balances[receiver] += amount; 
    } 

    function send(address receiver, uint amount) public { 
        if (balances[msg.sender] < amount) return; 
        balances[msg.sender] -= amount; 
        balances[receiver] += amount; 
   } 
}

The address of the account that 
created the contract.



Smart contracts on Ethereum: an example

contract TomCoin { 
    
    address public minter; 
    mapping (address => uint) public balances; 

    constructor() public { 
        minter = msg.sender; 
    } 

    function mint(address receiver, uint amount) public { 
        if (msg.sender != minter) return; 
        balances[receiver] += amount; 
    } 

    function send(address receiver, uint amount) public { 
        if (balances[msg.sender] < amount) return; 
        balances[msg.sender] -= amount; 
        balances[receiver] += amount; 
   } 
}

Only the contract owner can mint 
new coins.



Smart contracts on Ethereum: an example

contract TomCoin { 
    
    address public minter; 
    mapping (address => uint) public balances; 

    constructor() public { 
        minter = msg.sender; 
    } 

    function mint(address receiver, uint amount) public { 
        if (msg.sender != minter) return; 
        balances[receiver] += amount; 
    } 

    function send(address receiver, uint amount) public { 
        if (balances[msg.sender] < amount) return; 
        balances[msg.sender] -= amount; 
        balances[receiver] += amount; 
   } 
}

A “hashmap” that keeps track of the 
amount of TomCoin in each address.

0xde0b295669a9fd93d5f… 20

0x931D387731bBbC988B3… 100

0x2212D359CF1c5454Ae9… 0

0x931D387731bBbC988B3… 50

0xC55EdDadEeB47fcDE0B… 0

address uint



Smart contracts on Ethereum: an example

contract TomCoin { 
    
    address public minter; 
    mapping (address => uint) public balances; 

    constructor() public { 
        minter = msg.sender; 
    } 

    function mint(address receiver, uint amount) public { 
        if (msg.sender != minter) return; 
        balances[receiver] += amount; 
    } 

    function send(address receiver, uint amount) public { 
        if (balances[msg.sender] < amount) return; 
        balances[msg.sender] -= amount; 
        balances[receiver] += amount; 
   } 
}

Transfer TomCoin from sender 
address to receiver address, 
if sender has sufficient funds.



“Condition-oriented Programming” (Gavin Wood)

contract TomCoin { 
    … 

    function send(address receiver, uint amount) public { 
        if (balances[msg.sender] < amount) return; 
        balances[msg.sender] -= amount; 
        balances[receiver] += amount; 
    } 
}

A style of programming that ensures function bodies have no conditional paths. 

“Don’t mix (state) transitions with conditions”

contract TomCoin { 
    … 
    modifier only_with_at_least(uint amount) { 
        if (balances[msg.sender] >= amount) _; 
    } 

    function send(address receiver, uint amount) public  
    only_with_at_least(amount) { 
        balances[msg.sender] -= amount; 
        balances[receiver] += amount; 
    } 
}

(source: https://gavofyork.medium.com/condition-orientated-programming-969f6ba0161a )

https://gavofyork.medium.com/condition-orientated-programming-969f6ba0161a


Programmable money: the ERC-20 token standard

interface IERC20 {

 
  function totalSupply() public constant returns (uint);  
  function balanceOf(address owner) public constant returns (uint balance);  
  function allowance(address owner, address spender) public constant returns (uint remaining);  
  function transfer(address to, uint tokens) public returns (bool success);  
  function approve(address spender, uint tokens) public returns (bool success);  
  function transferFrom(address from, address to, uint tokens) public returns (bool success);  

  event Transfer(address indexed from, address indexed to, uint tokens);  
  event Approval(address indexed tokenOwner, address indexed spender, uint tokens); 

}



Programmable money: the ERC-20 token standard

interface IERC20 {

 
  function totalSupply() public constant returns (uint);  
  function balanceOf(address owner) public constant returns (uint balance);  
  function allowance(address owner, address spender) public constant returns (uint remaining);  
  function transfer(address to, uint tokens) public returns (bool success);  
  function approve(address spender, uint tokens) public returns (bool success);  
  function transferFrom(address from, address to, uint tokens) public returns (bool success);  

  event Transfer(address indexed from, address indexed to, uint tokens);  
  event Approval(address indexed tokenOwner, address indexed spender, uint tokens); 

}

$23.4 Billion market 
(source: etherscan.io, retrieved 08/01/2021)

http://etherscan.io


The risks of writing smart contracts

Parity freeze bug (2017)The DAO Hack (2016)

~$280 million accidentally frozen~$50 million stolen

cause: forgot to initialize field in 
constructor

cause: forgot to recheck contract state after 
call to external contract (basic re-entrancy bug)



The risks of writing smart contracts

The DAO Hack (2016)

~$50 million stolen

cause: forgot to recheck contract state after 
call to external contract (basic re-entrancy bug)

contract DAO { 
    
    mapping (address => uint) public balances; 
    … 

    function withdrawBalance() public { 
        bool result = msg.sender.call.value(balances[msg.sender])(); 
        if (!result) { 
          throw; 
        } 
        // update withdrawer’s balance 
        balances[msg.sender] = 0; 
    } 
    … 
}

contract Proxy { 
    … 

    function () public payable { 
        DAO(msg.sender).withdrawBalance(); 
    } 
    … 
}



What can we do? Pldesign for smart contracts

“There are two ways of constructing a software design: One way 
is to make it so simple that there are obviously no deficiencies, 
and the other way is to make it so complicated that there are no 
obvious deficiencies. The first method is far more difficult.”

- C.A.R. Hoare


