A gentle introduction to Digital Currencies and Smart Contracts

Tom Van Cutsem

IFIP WG2.16 Programming Language Design Meeting
January 2021

@ tvcutsem.github.io

m be.linkedin.com/in/tomvc O github.com/tvcutsem o twitter.com/tvcutsem

https://be.linkedin.com/in/tomvc
https://github.com/tvcutsem
https://twitter.com/tvcutsem
https://tvcutsem.github.io

“‘Money Is the most universal and most efficient
system of mutual trust ever devised.”

- Yuval Noah Harari
“Sapiens: a brief history of humankind”

IN Most forms of money, trust is centralised

SN 0

4)

”U . clearing s ”U

house
Bank L y Bank

o 0

Can trust be decentralised?

SN
o

Il —
Bank

s

o

clearing
house

~

0

_J

— 0
Bank

0

Can trust be decentralised?

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com
www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing chain of
hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
events witnessed, but proof that it came from the largest pool of CPU power. As
long as a majority of CPU power is controlled by nodes that are not cooperating to
attack the network, they'll generate the longest chain and outpace attackers. The
network itself requires minimal structure. Messages are broadcast on a best effort
basis, and nodes can leave and rejoin the network at will, accepting the longest
proof-of-work chain as proof of what happened while they were gone.

Satoshi Nakamoto
Bitcoin (2009)

Key technical innovation: blockchain

Replace central clearing house by a public, replicated, tamper-resistant
ledger

Validators group transactions in “blocks”, “chained” together into a linear
sequence using cryptographic hashes, secured using “proof of work”

| > >
Transaction > hash | ;I hash

| hereby transfer Block n Block n+17

1 bitcoin to Bob
HN-1) | | Tx || TX nonce Hin) | [Tx||[Tx]||Tx]|| nonce

8

signed, Alice

What other applications do blockchains enable”

Ethereum White Paper
A NEXT GENERATION SMART CONTRACT & DECENTRALIZED APPLICATION PLATFORM
v By Vitalik Buterin

When Satoshi Nakamoto first set the Bitcoin blockchain into motion in January 2009, he was
simultaneously introducing two radical and untested concepts. The first is the "bitcoin”, a decentralized
peer-to-peer online currency that maintains a value without any backing, intrinsic value or central issuer. So
far, the "bitcoin" as a currency unit has taken up the bulk of the public attention, both in terms of the political
aspects of a currency without a central bank and its extreme upward and downward volatility in price.
However, there is also another, equally important, part to Satoshi's grand experiment: the concept of a proof of
work-based blockchain to allow for public agreement on the order of transactions. Bitcoin as an application can
be described as a first-to-file system: if one entity has 50 BTC, and simultaneously sends the same 50 BTC to
A and to B, only the transaction that gets confirmed first will process. There is no intrinsic way of determining
from two transactions which came earlier, and for decades this stymied the development of decentralized
digital currency. Satoshi's blockchain was the first credible decentralized solution. And now, attention is
rapidly starting to shift toward this second part of Bitcoin's technology, and how the blockchain concept can be

used for more than just money.

V
Eth

italik Buterin
ereum (2014)

What other applications do blockchains enable”

‘ Ethereum White Paper

v By Vitalik Buterin

When Satoshi Nakamoto first set the Bitcoin blockchain into motion in January 2009, he was

simultaneously introducing two radical and untested concepts. The first is the "bitcoin”, a decentralized

| | |]
peer-to-peer online currency that maintains a value without any backing, intrinsic value or central issuer. So v ta‘ I k B Uterl n

far, the "bitcoin" as a currency unit has taken up the bulk of the public attention, both in terms of the political

aspects of a currency without a central bank and its extreme upward and downward volatility in price. Etlﬂ erGU| I I (201 4)

However, there is also another, equally important, part to Satoshi's grand experiment: the concept of a proof of

work-based blockchain to allow for public agreement on the order of transactions. Bitcoin as an application can
be described as a first-to-file system: if one entity has 50 BTC, and simultaneously sends the same 50 BTC to
A and to B, only the transaction that gets confirmed first will process. There is no intrinsic way of determining

from two transactions which came earlier, and for decades this stymied the development of decentralized

digital currency. Satoshi's blockchain was the first credible decentralized solution. And now, attention is
rapidly starting to shift toward this second part of Bitcoin's technology, and how the blockchain concept can be

used for more than just money.

Nick Szabo
Smart Contracts (1996)

What Is a smart contract?

A software program that automatically moves digital assets
according to arbitrary pre-specified rules

(source: V. Buterin, Ethereum White Paper, 2014)

Smart contracts: basic principle

An automaton that can trade physical assets

<::| 1. insert coins
E:> 2. dispense drink

Smart contracts: basic principle

An automaton that can trade digital assets

function rove (address _spender, uint256 _value)

(bool success) {

allowance [msg.sender] [_spender] = _value; 1 | | [| [|
INnsert aigital coins
}
|

function proveAndCall (address _spender, uint256 _value, bytes _extraData)

(bool success) {

retu
tokenRecipient spender = tokenRecipient (_spender) ;
if (approve(_spender, _value)) {

spender.receiveApproval (msg.sender, _value, this, _extraData);

return true;

(bool success) {

7

function transferFrom(address _from, address _to, uint256 _value) return
if (balanceOf[_from] < _value) throw;
if (balanceOf[_to] + _value < balanceOf[_to]) throw;

if (_value > allowance[_from] [msg.sender]) throw;
balanceOf[_from] -= _value;
balanceOf[_to] += _value;

2. dispense other digital assets
* or electronic rights

But who should we trust to faithfully execute the code”

An automaton that can trade digital assets

function ove (address _spender, uint256 _value)

re (bool success) {

allowance [msg.sender] [_spender] = _value; [| | [| |
return true; I n Se rt I Ita CO I n S
}
|

proveAndCall (address _spender, uint256 _value, bytes _extraData)

(bool success) {

tokenRecipient spender = tokenRecipient (_spender) ;
if (approve(_spender, _value)) {
spender.receiveApproval (msg.sender, _value, this, _extraData);

return true;

7]

nsferFrom (address _from, address _to, uint256 _value) returr (bool success) {

function tran
if (balanceOf[_from] < _value) throw;
if (balanceOf[_to] + _value < balanceOf[_to]) throw;
if (_value > allowance[_from] [msg.sender]) throw;

balanceOf[_from] -= _value;

2. dispense other digital assets
or electronic rights

Delegate trust to a decentralised network

A replicated automaton that can trade digital assets

ve (address _spender, wint256 _value)

- (bool success) {

oo [nsq. sender] [_spender] = _value

pender, uint2S6 _valus, bytes _extr

cxeneciptent (_spender)

_vatue))

ivepproval (neg. sender, _value, this, _extzadata);

funct

returns (ool success) {

(address _spender, uint2s
= (bool success) {

alloxance(meg. sender] [_spender] = _valus;

(address _spender, uint256 _value)

s (bool success) {

insert digital coins

veAndCall (address _spender, ulne256 _valus, byt

- _exeranata)
(bool success) {

alue, this, _extzabata) _value, this, _extzaData) ;

Eunction - R _to, wint256 _value) retums (bool success) { £unct from, address _to, uint256 _value) returns (bool success) {

Lanceof[_to]) throw;
g.sender]) throw;

1) theow:

) - _value] = _value

Lue)

2. dispense other digital assets
= | [=== or electronic rights

p— (address _spender, uint256 _value, bytes _ext

= (bool success) {

sseical) (sddzess _spender, wint256 valus, bytes _extrabata)

(ool success) {

“okenecipient spen
pender.

e venpproval (g, sender, _value, this, _extrapaca)

ensecipient (_spender)

ipient spender - tokenfecipient (_spandsz)

prove (_spender, _value)) {

value, this

Sdiress _to, uint256 _value)
iceot [_to]) throw,
sendex]) throw

(b0 success) | (ool success) {

lue < balanceot[_to]) throw
g.sendex]) throw

Eunetion O €

replicated code

A decentralized “world computer

))

O execute smart contracts

ddress _spender
s (ool success) {

uint256 _value)

alloxance(meg. sender] [_spender] = _valus;
)
funeton 5

11 (address _spender, uine256 _value, bytes _extravata)
s (bool success) {

tokenRecipient spender = tokesRecipient (_spender)
42 (approve (_spender, _valus))
spender. receiveapproval (ssg. sen

_value, this, _extzabata)

Sanction

(balanceot [_fram) < _value) throw.

i (balanceof[_to] + _value < balance0f[_to]) throw

Lf (value > allowancal_fron] [msg.sender]) throw; -
Ealanceo:

balanceot

Ciowance feem) (rag. sende] = _vaive
X

Transter(_from, _to, _value)

ferPron(address _from, address _to, uint256 _value) returns (bool success) (

 (address _spendes, wint256 _value)
1 success) (

. tbor
allovance(msq. sender] [_spender] = _value

function approvenndcall (address _spender
- o) (

(bool. succes:
£ (approve _spender, _value)) {

< _value) chrow,

ehrow

to] += _value.
allovance(_from] [meg.sender] —= _valus;
Transter _Erom, _t

uint256 _valus, bytes
tokenReciplent spender = tokenRecipient (_spender) ;

spender zeceiveApproval (nag. sender, _value, this

ecPron(address _from, address _to, uint256 _value) returns (bool success) (

tokenRecipient spender
4f (approve (_spender, _value))

spender. zecetveapproval (nsg. sender,

if (palan] < _value) throw;

1£ (_value > allovance|

- value;

com, address

Zunction approve (address _spender, uint256 _value)
retumms (bool success) {
Lowance [nsg. sender] [_spender] = _value
)
unction approverndcall (address _spender, ulnt256 _value, bytes _extrabata)
zeturns (bool success) (

tokenRectpient _spender)

_value, this, extzaData);

_to, uint256 _value) returns (bool success) {

£ (balance0f[_to) + _value < balanceof[_to]) thow
rou] [nsg. sender]) throw, - N

»

R EET e,

spender, utnt256 _value)

allovancelmsg. sender] [_spender] = _value;

veAndCall (address _spender, uint256 _value, bytes _extzabata)

tokensectpiont _spender)
_valuel)

cetverpproval (ssg.sender, valus, this, _extravata)

notion transferfrom(addsess from, addzess _to, uint256 valus) zevurns (bool succass) (
i (balanceof [_from] < _value) throw,

1us < b

anceof[_to]) throw.
=) [msg. sendez]) throw, .

= value:

TR VvVea
R BT we,

rove (address _spender, uint256 _value)
(bool success) |

allowance [nsg. sende] [_spender] = _value;

_extzabata)
cokenpacipient spender = tokenRecipient (_spender)
1€ (approve (_spender, _value)) {

pender. receiverpproval (ssq.sender, _valus, this, _sxtzabats)

rom(address _from, address to, winc2s6 s

lue) returns (bool success)

Lf (balanceof[_to] + _value < balancsof[_to]) throw
if (value > allowance(_fzon] [msg. sendex]) throw;
balanceof [_fren] -

balanceo[_to] +

_from) < _value) o

= _value
allowance[_tron) [nag. sender) —= _value
Transfer(from, _to, _value)

Fanction 0 {

nereurln

Each transaction updates the virtual computer’s replicated state

deposit 2 coins into
Bob’s contract

ddress _spendez, uint256 _value)
etumms (1
allovance(msq. sender] [_spender] = _value

(bool success)

function approvenndcall (address _spender
suscess) (
tokenReciplent spende

£ (approve (_spender

uine256 valve, bytes _exeravata)

tokenReciptent _spendex) ;

_vatue))
verpproval (neg.sender, _value, this, extradata) ;

function transferPron(address _from, address _to, ulnt256 _value) ret

< _value) chrow,

s (bool success)

if (palanceor| :

£ (balance0f (_to] + _value < balance0f[_tol) throw
1€ (_value > alloanca[_from] [nsg.sendex]) chrow

i

signed, Alice

Sametion (address _spender, uint256 _value) e ve(addross _spender, uint256 _value)
returns (bool success) { turns (bool succsss) (
alloxance(meg. sender] [_spender] = _valus; allovance(meq. sender] [_spender] = _value:

))

function 2 1(address _spender, uine256 _valus, bytes _extravata) unction approverndcall (address _spender, ulnt256 _value, bytes _extrabata)
roturns (bool success) { o

tokenRecipient _spendes)

vate)) (

alue, this, _extzabata) ceiveapproval (neg.sender, _value, this, _extzabata);

Sunction transferFron(address _from, address _to, wint256 value) retums (bool success) {
(balanceot [_fram) < _value) throw.

i (balanceof[_to] + _value < balance0f[_to]) throw

1 (_value > allowanca[_from] [asg.sender]) throw;

balanceos[_from] - _value:

function transferProm(address _from, address _to, uint256 _value) retusns (bool success) (

value
allowance[_tron] (nsg. sender) —= _value] [asg. sender] = _value;
Transter (from, _to, _value) L _to, _value)

»

£amotion O (
theow,

\g

Bob’s contract

function approve (address _spender, uint256 _value) Eunction spprove (address _spender, uint256 _value)
= (bool sucsess) (roturns (bool success) |
ance [mag. sender] [_spendez] = _value, sllowance [msg. sender] [_spender] = _value;

approveAndcall (address _spender, uint256 _value, bytes _extrabata) reAndCall (address _spender, uint256 _value, bytes _extzabata)

retums (bool success) { returns (bool success) {
<okenfiecipient spender = tokenRscipient (_spender) cokenpacipient spender = tokenRecipient (_spender)
i (spprove _spender, _value)) £ (o (_spender, _value)) {

spender. recelvenpproval (nsg.sender, _value, this, _extradata) Fecelvenpproval (ssg.sender, _value, this, _extravata)

ns (bool success) {

=, address _to, uinc256 _valus) retums (bool success) {
Value < balanceof[_to]) throw.
due > allovancel_rom] [asg.sender]) throw

» adue

7 e vatue batanceot o) 4= e
) (g semder]) = _vale l1cmancnl_fron] g o] — _valsn
Tranater Ciron, _to, valum)

function () Eunetion O {

network of validator nodes

Incoming transactions are sequenced into blocks

Transaction pool

.

function approve (address _spender, uint256 _value)
retumms (bool success) {
allowance (meq. sender] {_spendex] = _value

uine256 valve, bytes _exeravata)

function approverndcall (address _spender,
zeturns (bool success)
tokenRect;

ent spender = tokenRecipient (_spender) ;
£ (approve _spender, _value)) {
spender. zeceiveApproval (nag.sender, _value, this, cxtraData);

Eunction transferFron(address _from, address _to, uint256 value) returns (bool success) (
if (balanceof[_from] < _value) chrow
_value < balanceof(_tol) throw :
2T) chrow ek a

Sievanco _trca) (sog. senes] = _vaiue;

function 0 (
throw,

spender, uint256 _value)

uine256 _value)

returns (bool success) {
alloxance(meg. sender] [_spender] = _valus;

Zunction approve (address _spender,
returns (bool success)
allovance(meq. sender] [_spender] = _value:

Eunction approveAndcall (address _spender, uint256 _value, bytes _extrabata) 11(address _spender, uint256 _value, bytes _extrabata)
roturns (bool success) {
tokenRecipient spender = tokesRecipient (_spender)
42 (approve (_spender, _valus))
spender . receiveApproval (ssg. sendes

Eunction approvers
zeturns (bool success) (
tokenReciplent spender = tokenRecipient (_spender)
45 (approve (_spender, _value))

_value, this, _extzabata)

dor.

ender zeceiveApproval (neg.sender, _value, this, cxtraData) ;

Sunction transferFron(address _from, address _to, uint256 _value)

(balanceot[_from] < _valus) throw; :

turns (bool success) (function transferPron(address
£ (balanceos_fron] < _value) chr:

if (balance0f(_tol + _value < balance0f[_tol) throw .

, address _to, uint256 _value) returns (bool success)

16 (mlonamntl o) + vaton < belencn0E(_5o1) theows :
1 et aThovance(feem mag senerl) heoms 11 e e (6 Gt > ATiovanc oo g sertatTy theoms 1/ o tionine
e s e pom feicin -
s -

- value;

\g

Zanction 0 (
thro

)~ R~ T-E-m

TR EEER

rove (address _spender, uint256 _value) Eunction spprove (address _spender, uint256 _value)

= (bool success) (roturns (bool success) |
allowancelmag. sender] [_spender] = _value. llowancensg. sender] [_spender] = _value:

zoveAndCall (address _spender, uint256 _value, bytes _extrabata)

_spendex, wint2S6 _value, bytes _extzabata)

(bool success) {

reruens (ool suicess)
et = cokensesipiont Lspender) Cokenpacipient spendar tokesBactpient _spandar)
- ety { {2 (appeove spender, _valeer) 1
e recelveagproral (3 send, _value, chis, _extrapaca) rendr TocatvenpE s (3. sender, _valie, this, _exteapata)

nction transferFron(address _from, address _to, ulnt256 value) returns (bool success) (function
i (balanceof [_from] < _value) throw,
e < ba

ansforfron(address _from, address to, uint256 valus) returns (bool success) |

anceof[_to]) throw.
=) [msg. sendez]) throw, B

om] [meg. sender] —= _value;
Transter(from, _to, _valus) Transfer(from, _to, _value)

Fanction 0 {

— -

network of validator nodes

A blockchain ensures the network agrees on a single global order

IiiII IIIII
Iiiil Iliil

o (addross _spendez, uint256 _value)

<turns (bool success) {
allovance(msq. sender] [_spender] = _value

Sune

Lon approvenndcall (address _spender, uint256 value, bytes _extranata)
(bool suscess) (
tokenRecipient spender = tokenRecipient (_spender) ;
1 (approve _spender, _value)) {
civerpproval (eg.sender, _value, this, extradata) ;

function transferFron(address _from, address _to, uint256 _value) returns (bool success) {
if (balanceof[_from] < _value) chrow
£ (balance0f (_to] + _value < balance0f[_tol) throw

1€ (_value > alloanca[_from] [nsg.sendex]) chrow -

TO T1 T2

Sametion ddress _spender, uint256 _value) Zunction approve (address _spender, uint256 _value)
zeturns (bool success) { retumms (bool success) {
allovance(meq. sender] [_spender] = _value:

alloxance(meg. sender] [_spender] = _valus;

e veAndCall (address _spender, uint256 value, bytes _extravata)

(ool success)

£unceton app (Call(address _spender, ulne256 _value, bytes _extzabata)
roturns (bool success) {
tokenmecipient spender
42 (approve (_spender, _valus))
spender zeceiveApproval (ssg. sendex, _value, this, _extrabata)

kesRecipient (_spender) tokenRectpient _spender)
4f (approve (_spender, _value))

civerpproval (neg.sender, _value, this, cxtzaData) ;

function transferFron(address _from, address _to, uint256 _value) returns (bool success)

Sunction transferFron(address _from, address _to, wint256 value) retums (bool success) {
if (balanceof[_from] < _value) throw
i (balanceof[_to] + _value < balance0f[_to]) throw

Lf (value > allowancal_fron] [msg.sender]) throw; - wance - -
balanceos[_from] - _value:

balanceof[_to] += _value:

allowance[_tron] (nsg. sender) —= _value

Transter(_from, _to, _value) _to, _value)

\g

)~ R~ T-E-m

e E Block n Block n+17

function approve (address _spender, uint256 _value) function we (address _spender, uint256 _value) H O N N N N = = aE NN NN EE .
‘ , 1 1
£ (approve _spender, _value)) | i£ (approve _spender, _value)) { I I
' 1
;) 1
i 8 i ket :] 1
[

i
Balanceof [_from] —= _value; il I = = = = = = = = = = = = = = = = = = =

7 e vatue
i o] = _valons

Transter(from, _to, _valus)

function 0 (

balanceof[_to] += _value;
allowance[_tron) [nag. sender) —= _value
Transfer(from, _to, _value)

Fanction 0 {

network of validator nodes

hash

hash

ontracts are compiled into bytecode for a simple stack machine

Sametion

s (ool success) {

(balanceot(_to) + _vals

£amotion O (
theow,

_value)

ddress _spender, uint256 _value)

alloxance(meg. sender] [_spender] = _valus;

£une veRndCall (address _spender, uint256 _value, bytes _extzabata)
(bool success) {
tokenRecipient spender = tokerRecipient (_spender)
alue, this, _extzabata)
)
Sonction tr con(address _from, address _to, wint256 value) retums (bool success) {

(balanceot [_fram) < _value) throw.

< balanceof(_to]) throw;

(_value > allowancal_fron] [asq.sender]) throw;

retums (bool success)
“okenecipient spen
if (appwove _spender.

£ (balanceof[_to] +

7o (addross _spender, wint256 _value)

(bool success) {

allovance(msq. sender] [_spender] = _value

approvenndcall (address _spender, ulnt256 _value, bytes _extranata)
(bool suscess) (

ipient spender = tokenRecipient _spendes) ;
spender, _value))

veavprorel(ne. sender, _value, this, _cxtead

ddress _from, address _to, uint256 _value) re

< value thaon
+ Sl < balanoeof_tel) theow
ey scnder]) theow

i

s (bool success)

approve (address _spendez, uint256 _value)
[p—

allovancelmsg. sender] [_spender] = _value;

11(address _spender, uint256 _value, bytes _ext

«

value))

lveayprovsl (a3 sender, _value, this, _sxtzaoats)

okenmecipient (_spender)

(b0 success) |

iceot [_to]) throw,

Sunction spprove(address _spendsr, uint256 _value)
roturns (bool success) |

sllowance [msg. sender] [_spend

value:

= (ool success) {

(spender, _value))
ecstvanpp:

1€ (balanceof [_from) < _value) throw,

if (balancsof[to] + s

if (value > allowance_fzon] [nsg. sendex]) throw
. adue

Transfer(from, _to, _value)

Fanction 0 {

weAndCall (address _spender, uint256 _value,

ipient spender - tokenfecipient (_spandsz)

1(nsg.sender, value, this, ¢

address _to, uine256 _value)

lue < balanceot[_to]) throw

v (address _spender, uint256 _value)
s (bool success) {
allovance(meq. sender] [_spender] = _value:

eAndcall (address _spender, ulnt256 _value.
(ool success)
nt spender
4f (approve (_spender, _value))
spender zeceiveApproval

tokenRecipient _spendes)

g.zender, _valve, this, cxtzaData) ;

] [nsg. sender]) throw.

e
) g sandex) = _valun;
ror o, valom)

bytes _extrabata)

z/’ Bob’s contract

b

.SO|

solidity

idity source code

()

Solidity compller

. J

EVM bytecode

v

-

_

~

Ethereum Virtual Machine

J

network of validator nodes

Smart contracts on Ethereum: an example

k \g
A

contract TomCoin {

address public minter;
mapping (address => uint) public balances;

constructor() public {
minter = msg.sender;

}

function mint(address receiver, uint amount) public {
if (msg.sender != minter) return;
balances|[receiver] += amount;

}

function send(address receiver, uint amount) public {
if (balances[msg.sender] < amount) return;
balances[msg.sender] -= amount;
balances|[receiver] += amount;

(source: official Solidity documentation, https://docs.soliditylang.org)

https://docs.soliditylang.org/

Smart contracts on Ethereum: an example

Define a new contract.
contract TomCoin A

address public minter;
mapping (address => uint) public balances;

constructor() public {
minter = msg.sender;

}

function mint(address receiver, uint amount) public {
if (msg.sender != minter) return;
balances|[receiver] += amount;

}

function send(address receiver, uint amount) public {
if (balances[msg.sender] < amount) return;
balances[msg.sender] -= amount;
balances|[receiver] += amount;

Smart contracts on Ethereum: an example

contract TomCoin {

Define the contract state.

address public minter;
mapping (address => uint) public balances;

All state Is replicated and publicly

constructor() public {

) minter = msg.sender; persisted on the blockchain.
function mint(address receiver, uint amount) public {

if (msg.sender != minter) return;

balances|[receiver] += amount;
}

function send(address receiver, uint amount) public {
if (balances[msg.sender] < amount) return;
balances[msg.sender] -= amount;
balances|[receiver] += amount;

Smart contracts on Ethereum: an example

contract TomCoin {

address public minter;
mapping (address => uint) public balances;

constructor() public {

} minter = msg.sender; Define a constructor.

function mint(address receiver, uint amount) public { , ,
if (msg.sender != minter) return; The constructor Is run during
balances|[receiver] += amount; .

} creation of the contract and cannot

function send(address receiver, uint amount) public { be called afterwards.
if (balances[msg.sender] < amount) return;
balances[msg.sender] -= amount;
balances|[receiver] += amount;

Smart contracts on Ethereum: an example

contract TomCoin {

address public minter;
mapping (address => uint) public balances;

constructor() public {
minter = msg.sender;

}

function mint(address receiver, uint amount) public {
if (msg.sender != minter) return;
balances|[receiver] += amount;

}

function send(address receiver, uint amount) public {
if (balances[msg.sender] < amount) return;
balances[msg.sender] -= amount;
balances|[receiver] += amount;

Defi

ne functions.

Can be called by clients or contracts.

Can update the contract’s state.

Fur

trar

ctions are “called” by sending a
saction.

Each transaction is cryptographically
signed with the sender’s identity.

Smart contracts on Ethereum: an example

contract TomCoin {

The address of the account that
address public minter;
mapping I2addr'ess => uint) public balances; Created the contract.

constructor() public {
minter = msg.sender;

}

function mint(address receiver, uint amount) public {
if (msg.sender != minter) return;
balances|[receiver] += amount;

}

function send(address receiver, uint amount) public {
if (balances[msg.sender] < amount) return;
balances[msg.sender] -= amount;
balances|[receiver] += amount;

Smart contracts on Ethereum: an example

contract TomCoin {

address public minter;
mapping (address => uint) public balances;

constructor() public {
minter = msg.sender;

}

function mint(address receiver, uint amount) public { Omy the contract owner can mint
if (msg.sender != minter) return;
balances|[receiver] += amount; New COiﬂS,

}

function send(address receiver, uint amount) public {
if (balances[msg.sender] < amount) return;
balances[msg.sender] -= amount;
balances|[receiver] += amount;

Smart contracts on Ethereum: an example

contract TomCoin {

address pugcljic minter; i bal A "hashmap” that keeps track of the
; DS uint . : Y
1APPINg (address = uint) public balances amount of TomCoin in each address.

constructor() public {
minter = msg.sender;

} address uint
function mint(address receiver, uint amount) public { Oxdedb295669a9Fd93d5¥... 20
if (msg.sender != minter) return;
) balances[receiver] += amount; ©x931D387731bBbC988B3.. 100
function send(address receiver, uint amount) public { Ox2212D359CF1c>454Ae9... 0
it (balances[msg.sender] < amount) returng
balances[msg.sender] -= amount; 6x931D387731bBbC988B3.. 50
balances[receiver] += amount; e ———————————
} } OxC55EdDadEeB47+cDE®©B... 0

Smart contracts on Ethereum: an example

contract TomCoin {

address public minter;
mapping (address => uint) public balances;

constructor() public {
minter = msg.sender;

}

function mint(address receiver, uint amount) public {
if (msg.sender != minter) return;
balances|[receiver] += amount;

}

function send(address receiver, uint amount) public { '
if (balanées[msg.sender‘] < amount) return; Transfer TomCoin from sender
balancesimsg.sender] -= amount; address to receiver address
balances[receiver] += amount; | o ’

} if sender has sufficient funds.

“Condition-oriented Programming” (Gavin Wood)

A style of programming that ensures function bodies have no conditional paths.

“Don’t mix (state) transitions with conditions”

contract TomCoin { contract TomCoin {

' modifier only with at least(uint amount) {

if (balances[msg.sender] >= amount) _;
}

function send(address receiver, uint amount) public {
if (balances[msg.sender] < amount) return;

balances[msg.sender] -= amount;
balances[receiver] += amount; function send(address receiver, uint amount) public
} only with at least(amount) {
} balances[msg.sender] -= amount;
balances[receiver] += amount;
}
}

(source: https://gavofyork.medium.com/condition-orientated-programming-969f6ba0i61a)

https://gavofyork.medium.com/condition-orientated-programming-969f6ba0161a

Programmable money: the ERC-20 token standard

interface IERC20 {

function totalSupply() public constant returns (uint);

function balanceOf (address owner) public constant returns (uint balance);

function allowance(address owner, address spender) public constant returns (uint remaining);
function transfer(address to, uint tokens) public returns (bool success);

function approve(address spender, uint tokens) public returns (bool success);

function transferFrom(address from, address to, uint tokens) public returns (bool success);

event Transfer(address indexed from, address indexed to, uint tokens);
event Approval(address indexed tokenOwner, address indexed spender, uint tokens);

Programmable money: the ERC-20 token standard

interface IERC20 {

function totalSupply() public constant returns (uint);

function balanceOf (address owner) public constant returns (uint balance);

function allowance(address owner, address spender) public constant returns (uint remaining);
function transfer(address to, uint tokens) public returns (bool success);

function approve(address spender, uint tokens) public returns (bool success);

function transferFrom(address from, address to, uint tokens) public returns (bool success);

event Transfer(address indexed from, address indexed to, uint tokens);
event Approval(address indexed tokenOwner, address indexed spender, uint tokens);

& tether
$23.4 Billion market

(source: etherscan.io, retrieved 08/01/2021)

http://etherscan.io

The risks of writing smart contracts

The DAO Hack (2016)

Cybersecurity

A $50 Million Heist Unleashes High-
Stakes Showdown in Blockchain

By Olga Kharif
23 juni 2016 19:05 CEST

~$50 million stolen

cause: forgot to recheck contract state after
call to external contract (basic re-entrancy bug)

Parity freeze bug (2017)

THE FINTECH EFFECT

EEEEEEEEEEEEEEEE

‘Accidental’ bug may have frozen
$280 million worth of digital coin
ether in a cryptocurrency wallet

~$280 million accidentally frozen

cause: forgot to initialize field in
constructor

The risks of writing smart contracts

The DAO HaCk (201 6) contract DAO {

mapping (address => uint) public balances;

=Menu QSearch Bloomberg

function withdrawBalance() public {
bool result = msg.sender.call.value(balances[msg.sender])();
if (!result) {
throw;

// update withdrawer’s balance
balances[msg.sender] = 0;

Cybersecurity

A $50 Million Heist Unleashes High- }
Stakes Showdown in Blockchain

By Olga Kharif
23 juni 2016 19:05 CEST

contract Proxy {

~$50 million stolen

function () public payable {
DAO(msg.sender) .withdrawBalance();

cause: forgot to recheck contract state after
call to external contract (basic re-entrancy bug)

What can we do”? Pldesign for smart contracts

“There are two ways of constructing a software design: One way
1s to make it so simple that there are obviously no deficiencies,
and the other way is to make it so complicated that there are no
obvious deficiencies. The first method is far more difficult.”

- C.A.R. Hoare

