KU LEUVEN

INntroduction to JavaScript
and Asynchronous Control Flow

Tom Van Cutsem

DistriNet KU Leuven

Comparative Programming Languages
October 2023

JS

Outline

- Part 1: What is JavaScript”?
- Part 2: A taste of JavaScript

- Part 3: Event loops and asynchronous control flow

JS

2 I DistriN=t

Part 1: What is JavaScript”

3 = DistriN=t

JavaScript: origins

+ Invented by Brendan Eich in 1995 at Netscape

- [o support “scripting” of web pages in the Netscape Navigator browser

+ First called LiveScript, then JavaScript, later standardized as ECMAScript

Brendan Eich

File Edit View Go Bookmarks Options Directory Window Help

-@o|o¢ o @|m|z|&
Bank Fonwerd Ieges Open Print

Home Reload

3 =
Find Stop

Location:labout: .ll N
What's New!I What's Cool!l Handbook | Net Search | Net Dilectoryl Software | Sl

Netscape Navigator ™9
Version 2.01
‘b\ | Copyright © 1994-1995 Netscape Communications Corporation, All rights reserved.
4 This software is subject to the license agreement set forth in the license. Please read and agree to all
terms before using this software.

Report any problems through the feedback page.

NETSCAPE

Netscape Communications, Netscape, Netscape Navigator and the Netscape Communications logo are
tradematks of Netscape Communications Corporation.

Contains Java ™ software developed by Sun Microsystems, Inc.
Copyright @ 1992-1995 Sun Microsystems, Inc. All Rights Reserved.

53| |Document: Done

&7

I DistriN=t

Javascript & the Web

Scripts embedded in web pages, executed on the client (in the browser)

“Mobile” code. Remote code execution!

Original use case: client-side form validation and Ul effects

“%%\ (") GET /hello.html I
Web Browser < \Web Server
(5) execute script & chem>

U P <script>
// javascript code

et vora alert(“Hello, World!”);

- </script>
</html>)
5 R DistriN=t

t’s no longer just about the Web. JavaScript is used widely across tiers

nedec Omong
\7&@ a 2% CoiichDB

GraalVM.

u CORDOVA"
s

Embedded Mobile Desktop/Native Server/Cloud Database

6 I DistriN=t

Scripting languages are “embedded” in a “host” environment

Browser “host” env Server “host” env

Webpage Web server app

DOM (HTML) L ocal storage Network 1/0 File 1/0

7 I DistriN=t

Example: the Browser host environment

Host environment (e.g. browser)

a <script> in a webpage secma objects defined by W3

the host environment
Object - Array

-, Math

Q Script objects

e Built-in objects

O Host objects

Lobal
g N window

window.document

var obj = {..}
document.location

8 I DistriN=t

JavaScript as a language is independent of the host environment

+ For example, on the Welb:

secma W3C"

e Standardizes JavaScript e Standardizes browser APIs

e Core language + relatively small standard library e | arge set of system APIs

e E£.g. Object, Math, JSON, String, Date, Array, ... e £.9. DOM, LocalStorage, XHR, Media, ...
e Pure computation in a “virtual machine” sandlbox ® Privileged access to the host environment
¢ | ike “User mode” in an OS ¢ | ike “Kernel mode” in an OS

See https://developer.mozilla.org/en-US/docs/\Web/JavaScript/Reference See https://developer.mozilla.org/en-US/docs/\Web/API

9 I DistriN=t

https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

JavaScript on the server: node.|s
- Web and network application server, built on Google's V8 JavaScript runtime
+ Extends Javascript with support for asynchronous I/O on files and sockets

- Example: a simple HT TP server

let http = require('http');

http.createServer(function (req, res) {
res.writeHead (200, {'Content-Type': 'text/plain'}); n \) c
res.end('Hello World\n'); v
}).listen(1337, "127.0.0.1"); @

console.log('Server running at http://127.0.0.1:1337/");

10 I DistriN=t

Part 2: A taste of Javascript

11 = DistriN=t

Multi-paradigm: can use both object-oriented and functional styles

Object-oriented (classes & methods) Functional (“records” & functions)
class Point { function makePoint(x, y) {
constructor(x, y) { return {
this.x = X; X: X,
this.y = vy; y:y
} ¥
toString() { }
return "~ (${this.x} , ${this.y}) ; function toString(point) {
} return ~(${point.x} , ${point.y}) ;
} }
let p = new Point(1,2); let p = makePoint(1,2);
p.x; // 1 p.x; // 1
p.toString(); // “(1 , 2)” toString(p); // “(1 , 2)”

12 I DistriN=t

Multi-paradigm: can use both object-oriented and functional styles

Object-oriented {elasses-&methods)

Objects as “records” of functions

Functional (“records” & functions)

function makePoint(x, y) {
return {
get x() { return x }

get y() { return y }
toString() A

return " (${x} , ${y}) ;

}
}s
¥
let p = makePoint(1,2);
p.x; // 1

p.toString(); // “(1 , 2)”

function makePoint(x, y) {
return {

X: X,

y:y

}s

}
function toString(point) {

return " (${point.x} , ${point.y}) ;
}

let p = makePoint(1,2);
p.x; // 1
toString(p); // “(1 , 2)”

(See also https://martinfowler.com/bliki/FunctionAsObject.html)

I DistriN=t

https://martinfowler.com/bliki/FunctionAsObject.html

The three most important values in JavaScript programs

+ Objects
+ Arrays

- Functions

14 = DistriN=t

Objects

JavaScript Objects are records that map keys (strings or “symbols”) to values
Key-value pairs are called “properties” in JavaScript

Object literals are expressions that evaluate to a fresh object, and can be
arbitrarily nested

Lookup a property using the dot-operator

bob
/ 1 Bob 1
nnamen '/
"birthdate™ ® > "day" 15
"address” ® "month" 3
v "year" 1980

15

let bob = {
name: "Bob",
birthdate: {
day: 15,
month: 3,
year: 19809
}s

address: {
street: "...",
number: 5,
zip: 94040,
country: "US"
}

s

bob.address.number
// 5

I DistriN=t

Arrays

- JavaScript arrays are seguences of values, similar
to Python or Java Lists

let a = [1, "a", {x:1, y:1}]

Can dynamically grow/shrink to add/remove // 1terate over array, imperative style
elements for (let 1 = 0; i < a.length; i++) {
let x = a[i];

console.log(x);

- The length property is a computed property that }

returns the current number of elements , ,
// 1terate over array, functional style

| a.forEach(function (x) {
Can access elements from index @ up to 1length-1 console.log(X);

1)
Indexing out of bounds returns the value

. // 1terate over array, using iterators
undefinea for (let x of a) {
console.log(x);
+Arrays are also objects, and provide many utility }

methods (e.g. forEach, map, reduce, ...)

16 I DistriN=t

Functions

May be named or anonymous

// a function declaration (a statement)
function add(a, b) {

Functions are values } return a + b;

add(2, 3); // 5

They are “first-class” citizens of the
language, just like objects, arrays,

: // a function expression
St”ﬂgs, ﬂumbers, etC. let add = function(a, b) {

return a + b;

}

add(2, 3); // 5

Must use an explicit return

statement to return a value to the
caller (otherwise, the function returns
the value undefined)

17 I DistriN=t

Algorithms 101 example: walking a binary tree

let tree = {
key: llall,

left: { tree
key: llbll,
left: { key: "c"

right: { key: "d" }
}, °
right: {
key: "e",
left: { key: "f" },
right: { key: "g" }
}
}s
function walk(tree, keys = []) { ° o 0 °
if (tree) {

keys.push(tree.key);
walk(tree.left, keys);
walk(tree.right, keys);

¥

return keys;

}

Walk(tr‘ee) // [llall, IIbII’ IICI|, Ildll, llell, II_F") llgll]

9}
-
\o

18 I DistriN=t

Functions

Higher-order functions: . .
. function makeAccumulator(init) {
functions that take other let accum = init;
. . return function(val) {
functions as input or return accum += val;
other functions as output , e acedm;
}
Functions Mmay use variables let a = makeAccumulator(®);
BT) ' a(2) /] 2
from their “outer” lexical 2(3) /5
scope (they are closures) :ggg s

19 I DistriN=t

Functions

Higher-order functions are
used everywhere in JavaScript

Loop over collections

Register event listeners

let a = [1, 2, 3]

a.map(function (x) { return x * x; })

/] 11, 4, 9]

a.reduce(function (acc, x) { return acc + x; }, 0)

// 6

let clicks = ©;
button.addEventListener("click", function (event) {
clicks++;

})s

20 I DistriN=t

Arrow functions

Notational shorthand
Always anonymous

Function body Is an expression
(N0 return statement needed!)

Function body can be a
statement it enclosed with {}

let a = [1, 2, 3]

a.map(x => x * x)

// 11, 4, 9]

a.reduce((acc, x) => (acc + x), 0)

// 6

let clicks = ©;
button.addEventListener("click", event => {
clicks++;

})s

21

I DistriN=t

Arrow functions

-unction body can be a statement
if enclosed with { }

let a = [1, 2, 3]

Don't confuse with the syntax for a.map(x => {value: x})
ijec’[literals! // [undefined, undefined, undefined]

a.map(x => ({value: x}))
// [{value: 1}, {value: 2}, {value: 3}]

In the first example, the value: x

syntax Is interpreted as a labeled
statement (can be used along with
break <label>; and continue

<label>; statements - but this is
rarely done)

22 I DistriN=t

JavaScript objects are dynamic collections of (name, value) pairs

let point = {x: 1, y: 2}; let point = {x: 1, y: 2};

// can add more properties at runtime // objects can be made tamper-proof or ‘frozen’
point.z = 3; Object.freeze(point);

// can delete properties at runtime (!) point.z = 0;

delete point.z; // error: can’t add properties to

// a frozen object
// computed property access
let key = input("x or y?") delete point.x;

point[key] // error: can’t delete properties of
// a frozen object

// computed property update

point[key] = 42 point.x = 7;
// error: can’t update properties of
// can iterate over properties of an object // a frozen object

for (let key in point) {
console.log(${key} => ${point[key]}));

}
// X =>1
/]y => 2

23 I DistriN=t

JavaScript is a “dynamic” language (?)

- What do people mean by that? Unclear: no precise definition.

- JavaScript is “interpreted” (vs. compiled): this is a property of the // values have a type, variables don’t
Implementation, not of the language. JIT and AOT JavaScript compilers exist. let x = 42
But it is indeed common for JavaScript code to be interpreted based directly typeof x // “number”
on source files X = "hello world"

typeof x // “string”

- JavaScript is dynamically typed: values have a runtime type, but variables or
object properties do not have a static type

- Many JavaScript operators perform implicit type coercion. This encourages // implicit type coercions
sloppy code and invites mistakes (see examples on the right) "9" == @ // true (!)

"@" === 0 // false (so always prefer ===)
- The “shape” of JavaScript objects and arrays is not fixed (they support a 1+ "2" /) ?
dynamic set of properties, see previous slide)

- JavaScript supports “eval”: interpret the contents of a string as a program and
execute it on-the-fly at runtime

// evaluate a string as a program

- Powerful and flexible, but a security nightmare if the string input can be let x = eval("1 + 2%)

influenced by an attacker. let f = eval((function() { return ${x} }))

o | f P
- Prefer to use modules and module loaders. Similar to dynamic class ff’ioStr‘ing 0 % >

loading in e.g. the Java Virtual Machine

24 I DistriN=t

Static types: TypeScript

- TypeScript is a dialect of Javascript that extends the language with optional
static type annotations

- TypeScript is a superset of JavaScript: every valid JavaScript program is a
valid Typescript program, but not the other way around.

type Point = {x: number, y: number};

- TypeScript supports type inference: types can sometimes be derived based
on program context. Values for which the type cannot be derived are given
the any type

function makePoint(x: number, y: number): Point {
return { X: X, y: Vy };

}

* Typescript's type system is unsound: function toString(point: Point): string {

return ~(${point.x} , ${point.y}) ;

- The any type is considered compatible with all other types)
* A program that type-checks may still fail with a runtime type error let p = makePoint(1,2); // p has type Point
D.X; // p.x has type number

- Typescript is translated into JavaScript by removing the type annotations

toStrin ; // toStrin has type strin
(and the compiler does not insert additional runtime type checks)) &(p) g(p) YP g

- But still useful: catches many bugs at compile-time, serves as
developer documentation, enables the IDE to provide intelligent
autocompletion

25 I DistriN=t

Static types: Typescript V syntax confusion

- TypeScript is a dialect of Javascript that extends the language with optional

static type annotations An object type declaration
- TypeScript is a superset of JavaScript: every valid Javascript program is a /
valid Typescript program, but not the other way around. 4

type Point = {x: number, y: number};

- TypeScript supports type inference: types can sometimes be derived based
on program context. Values for which the type cannot be derived are given

return { x: X, y: v };
the any type
y yp } \ An object literal

- Typescript’s type system is unsound:

function makePoint(x: number, y: number): Point {

function toString(point: Point): string {
return ~(${point.x} , ${point.y}) ;

- The any type is considered compatible with all other types)
* A program that type-checks may still fail with a runtime type error let p = makePoint(1,2); // p has type Point
D.X; // p.x has type number

- Typescript is translated into JavaScript by removing the type annotations

toStrin ; // toStrin has type strin
(and the compiler does not insert additional runtime type checks)) &(p) g(p) YP g

- But still useful: catches many bugs at compile-time, serves as
developer documentation, enables the IDE to provide intelligent
autocompletion

26 I DistriN=t

Example: binary trees (untyped)

tree

let tree = { o

key: Ilall,

left: {
key: "b",
left: { key: "c" },

right: { key: "d" }

}s
right: {
key: llell,

left: { key: "f" },
right: { key: "g" }
}
}s

(@

27 I DistriN=t

Example: binary trees (with Typescript type annotations)

type Tree<T> = {

key : T,
left? : Tree<T>,
right? : Tree<T>

}

let tree: Tree<string>
key: "a",
left: {
key: "b",
left: { key: "c"
right: { key: "d"
}s
right: {
key: "e",
left: { key: "f"
right: { key: "g"
}
}s

(@]

{

tree

28

I DistriN=t

Example: binary trees (with Typescript type annotations)

type Tree<T> = {
key : T,
left? : Tree<T>,
right? : Tree<T>

}

A type annot

ation on a variable

/

let tree: Tree<string> = {

key: "a",

left: { A property defir
key: "b";e///
left: { key: "c" },
right: { key: "d" }

I

right: {
key: "e",
left: { key: "f" },
right: { key: "g" }

}

s

ition in an object literal

V Syntax confusion

tree

29

I DistriN=t

JavaScript: don’t let the Java-like syntax fool you!

Java and JavaScript are two very different languages
+ Doug Crockford: “JavaScript is a Lisp in C’s clothing”

- JavScript is more akin to Scheme or Lisp than it is to
Java or C

Douglas Crockford,
Inventor of JSON
and author of JS: The Good Parts

+ Stop and think: why do you think this is the case?

See “JavaScript: The World's Most Misunderstood Programming Language” :
by Doug Crockford at http://www.crockford.com/javascript/javascript.html for J %Va %I’ 1pt-
a 2001 perspective on JavaScript The Good Parts

O‘RE"_LYe -YAHOO-’- PRESS Douglas Crockford

30 I DistriN=t

http://www.crockford.com/javascript/javascript.html

Part 3: Event loops and asynchronous control flow

31 = DistriN=t

Recall: scripting languages are “embedded” In a “host” environment

Browser “host” env Server “host” env

Webpage Web server app

DOM (HTML) Local storage Network /O File 1/0

32 I DistriN=t

Events, event loops and callbacks

Host environment Host environment

web page wWeb server

event

loop function(){..} 22l function(){..}

event xQ7 event
handlers handlers

33 I DistriN=t

JavaScript code is called from an infinite loop called the event loop

To respond to an event, register an event handler (e.g. when a <script> is first executed)
The event handler is often a function, called a callback

When the event occurs, it gets enqueued in the event queue

-or each event in order, the event loop dequeues the event and calls the registered callback
function (if any), with the event

—vents are processed one at a time: the next event is only dequeued and dispatched when
the callback function has returned

When there are no more events to process, the event loop sits Idle waiting for events
The event loop Is executed by a single thread of control

No parallel event processing, but also no need for concurrency control (i.e. locking)

34 IS DistriN=t

“Callback” functions: examples in the browser

In the browser, all JavaScript <script>
elements from the same webpage share a
single event loop (actually, there is one event
loop per frame within the webpage)

Host environment

Events include page lifecycle events, Ul
events, timer events, ...

function(event){..}

Example Ul event: clicking a button ‘ ~ O even

handlers

let button = document.getElementById("button-id")

button.onclick = function(event) {
window.alert("button was clicked")

}

35 I DistriN=t

‘Callback” functions: examples on the server

-+ A node.|s process, like a web page, provides
a single event loop for code to execute In

Host environment

—vents include things like incoming HT TP

: : o
requests, bytes read from a file on disk, T

: : : event
operating system interrupt signals, etc. loop function() (.1
— . ' X9 event
—xample: responding to HT TP requests S S

let http = require('http');

http.createServer(function (req, res) {

res.writeHead (200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');

}).listen(1337, "127.0.0.1");

36 I DistriN=t

Callbacks & The “Hollywood Principle”

» Inversion of control: “don’t call us, we’ll call you”

let button = document.getElementById("button-id")

button.onclick = function(event) {
window.alert("button was clicked")

}

let http = require('http');

http.createServer(function (req, res) {
res.writeHead(200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');

}).listen(1337, "127.0.0.1");

37 I DistriN=t

/O In event loops: the XMLHT TPRequest (XHR) APl in the browser

So far, all actions we saw originated from
the host. What if your JS app needs to

let xhr = new XMLHttpRequest();

initiate an action itself? E.g. fetch a URL, xhr.onreadystatechange = function() {
lookup a value in a database, read a file... if (xhr.readyState == XMLHttpRequest.DONE) {
handleResponse(xhr.responseText);
¥
D i D ¥
XMLHTT ?quest s a browser A I_that Xhr.open("GET", "http://example.com"):
allows JavaScnpt scripts to make HIT TP xhr.send(); // asynchronous call

requests 1o a server, after the page has function handleResponse(text) {

loaded. // show the text in a new <div> element on the page
let div = document.createElement("div");
div.textContent = text;

- €JgacCy APIl. Modern alternatives exist (see document.getElementById("result").appendChild(div);
ater), but the term “XHR” is still sometimes J

used to refer to dynamic HT TP requests
made by JavaScript scripts in browsers.

38 I DistriN=t

/O In event loops: why Is the XHR asynchronous®?

By making the XHR asynchronous, the event loop is
free to process other events while the response to
the XHR request is pending. Host environment

In particular, Ul rendering updates are done by the
same event loop thread in between events (when no

script code is running) event -onreadystatechange
loop

web page

function(){..}

If the XHR were synchronous, it would block the . ’ | O over
entire event loop, rendering the entire webpage N O handlers
unresponsive while waiting for the server’s xnr-sendO)

response!

events

Side-note: the browser XHR API actually allows to
make blocking (synchronous) XHR calls. It is widely
considered bad practice to do so.

39 I DistriN=t

/O In event [oops

+ The golden rule of event-based programming:
never block the event loop!

Host environment

web page

.onreadystatechange
event y 5

function(){..}

G event

handlers
xhr.send()

events

40 I DistriN=t

Senefits:

Run-to-completion: simple, consistent
mMmodel to reason about: functions are never
ore-empted while running. Only one function
IS executing at a time.

Write lock-free code: no multithreading, so
no need to manage locks or worry albout
data races when reading/writing variables, no
need to manage deadlock, etc.

Better resource utilization: the event loop
never “blocks” on external /0. Get maximum
performance out of a single thread of control.

41

Drawbacks:

No parallelism: events cannot be processed Iin
parallel, even if they touch different parts of the
application state.

Inversion of control: whenever we want to do
asynchronous /O, we can no longer use the call stack
to sequence control flow (let the caller wait until the
callee returns). Instead, we must “nest” the work to be
done inside a callback function. This can lead to deeply
nested code, sometimes referred to as “callback hell”

Harder to debug: stack traces in event handlers don't
reveal the context of where the event was originally
fired. Also, with async |/O, the callee can no longer use
exceptions to signal errors, as there is no call stack to
unwind.

IS DistriN=t

“Callback Hell”

// synchronous call chain // asynchronous call chain

stepl(function (valuel) {
let valuel = stepl() step2(valuel, function(value2) {
let value2 = step2(valuel) step3(value2, function(value3) {
let value3 = step3(value2) step4(value3, function(valued) {
let value4 = step4(value3) // do something with value4
// do something with value4 });

1)
1)
1)

42 I DistriN=t

Callbacks: dealing with exceptions

Normal function calls can return normally, or throw an

exception // synchronous call
function readFile(path: string): string;

Exceptions don’t work for asynchronous operations! try {
let content = readFile("hello.txt");

The “caller” has glready returned when the operation is /7 use content
executed. There is no more call stack to unwind! } catch (err) {
// handle error
¥
S0, how to handle “exceptions” for asynchronous calls?
A common pattern is to pass an error object as first // asynchronous call
argument to the callback function: function readFile(path: string,

cb: (e: Error, v: string) => void);

If the operation succeeded, the error will be readFile("hello.txt", function (err, content) {

. if (err) {
undetined // handle error
} else {
. . . . // tent
If the operation failed, the error will contain an Error } o
object with details 2

43 I DistriN=t

Promises

- A promise Is a placeholder for a value that function readFile(path: string,
may only be available in the future cb: (e: Error, v: string) => void);

// callback-based asynchronous call
readFile("hello.txt", function (err, content) {

+Introduced in recent versions of JavaScript if (err)
// handle error
(after 2015) } else {
// use content
}
1)

- Most asynchronous APIs now use Promises
instead of callbacks

function readFile(path: string) => Promise<string>;

// Promise-based asynchronous function call
let promise = readFile("hello.txt");
promise.then(function (content) {

// use content
}, function (err) {

// handle error

1)

44 I DistriN=t

XMLHTTPRequest (XHR) example revisited

- The modern way to make an HI TP request from a script in the browser:

let xhr = new XMLHttpRequest();

xhr.onreadystatechange = function() {
if (xhr.readyState == XMLHttpRequest.DONE) {

handleResponse(xhr.responseText);
}
}
xhr.open("GET", "http://example.com");
xhr.send(); // asynchronous call

function handleResponse(text) {
// show the text in a new <div> element on the page

let div = document.createElement("div");

div.textContent = text;
document.getElementById("result").appendChild(div);

¥

45

let response = fetch("http://example.com");

response.then(text => {
// show the text in a new <div> element on the page

let div = document.createElement("div");

div.textContent = text;
document.getElementById("result").appendChild(div);

})s

I DistriN=t

Promises

A promise represents the eventual completion
(or failure) of an asynchronous operation and its
resulting value.

It Is an object that can be in one of three states:
Pending: the initial state
Fulfilled (with a value)
Rejected (with an error)

Once a promise is either fulfilled or rejected, it
remains in that state.

46

let promise = readFile("hello.txt");
// A: promise 1is pending
promise.then(function (content) {

// B: promise is fulfilled with a value
}, function (err) {

// C: promise 1is rejected with an error

})s

Fulfilled Rejected

I DistriN=t

Promise “chaining”

Have we really solved the problem? \We are
still passing callback functions to the then

method.

Promises have a secret abllity: they can be
“chained”:

47

let promise = readFile("hello.txt");
promise.then(function (content) {

// use content
}, function (err) {
// handle error

})s

I DistriN=t

Promise “chaining”

Have we really solved the problem? \We are
still passing callback functions to the then

method.

Promises have a secret abllity: they can be
“chained”:

48

let promise = readFile("hello.txt");
let p2 = promise.then(function (content) {

// transform content
}, function (err) {
// recover from error

})s

I DistriN=t

Promise “chaining”

A call to then returns a “chained” promise

let promise = readFile("hello.txt");
let p2 = promise.then(function (content) {

The success and failure callbacks passed to // decode may throw
t d d tent);
then may themselves return a value or throw L imetion Camsment)
' // fall back to another file
N exceptlon return readFile("default.txt");
1)

his return value (or exception) is then used
to fulfill (or reject) the chained promise

Resolving a promise pl with another promise
p2 causes p1l to eventually become fulfilled/
rejected with the same value/error as p2

49 I DistriN=t

Promise chaining solves the problem of “callback hell”

function stepl(value, callback): void,;

stepl(function (e, valuel) {
if (e) { return handleError(e); }
step2(valuel, function(e, value2) {
if (e) { return handleError(e); }
step3(value2, function(e, value3) {
if (e) { return handleError(e); }
step4(value3, function(e, value4) {
if (e) { return handleError(e); }
// do something with value4

})s
1)
1)
})s

50

function stepl(value): Promise;

stepl()
.then(valuel => step2(valuel))
.then(value2 => step3(value2))
.then(value3 => step4(valuel))
.then(function (valued) {

// do something with value4
})
.catch(function (error) {

// handle any error here

})s

I DistriN=t

Promise “combinators”

Plain promises

function concatFiles(pathl, path2) {
let pl = readFile(pathl);
let p2 = readFile(path2);

return pl.then(textl => {
return p2.then(text2 => {
return textl + text2;

})s
})s
}

concatFiles("a.txt", "b.txt").then(val => {
writeFile("merged.txt", val);

})s

51 I DistriN=t

Promise “combinators”

Plain promises Promise combinators
function concatFiles(pathl, path2) { function concatFiles(pathl, path2) {
let pl = readFile(pathl); let pl = readFile(pathl);
let p2 = readFile(path2); let p2 = readFile(path2);
return pl.then(textl => { return Promise.all([pl, p2]).then(vals => {
return p2.then(text2 => { let [textl, text2] = vals;
return textl + text2; return textl + text2;
1) 1)
19F ¥
}
concatFiles("a.txt", "b.txt").then(val => {
concatFiles("a.txt", "b.txt").then(val => { writeFile("merged.txt", val);
writeFile("merged.txt", val); });
1)

52 I DistriN=t

Promise “combinators”

- And now with fallback error logic:

function concatFiles(pathl, path2, default) {
let pl = readFile(pathl).catch(err => readFile(default));
let p2 = readFile(path2).catch(err => readFile(default));

return Promise.all([pl, p2]).then(vals => {
let [textl, text2] = vals;
return textl + text2;
1)
}

concatFiles("a.txt", "b.txt", "c.txt").then(val => {
writeFile("merged.txt", val);

})s

53 I DistriN=t

Promise “combinators”

readFile(pathl) readFile(path2)

- And now with fallback error logic:

function concatFiles(pathl, path2, default) { .catch() .catch()
let p1 = readFile(pathl) (err => readFile(default));
let p2 = readFile(path2) (err => readFile(default));

return Promise.all([pl, p2]).then(vals => {
let [textl, text2] = vals;
return textl + text2;
1)
}

concatFiles("a.txt", "b.txt", "c.txt").then(val => {
writeFile("merged.txt", val);

})s

Promise.all()

54

I DistriN=t

Promise “combinators”

Promise.all: fulfills when all of the promises
fulfill; rejects when any of the promises rejects.

The fultilled value Is an array of fulfilled values
, , , function Promise.all(inputs: Promise<T>[]): Promise<T[]>;
of the Input Promises (Iﬂ the same Order) function Promise.any(inputs: Promise<T>[]): Promise<T>;

let vals = [1, 2, 3]
let proms = vals.map(v => Promise.resolve(v))

Promise.any: fulfills when any of the promises
Ulﬂ”S I’ejeC’tS when a" Of the prOmiseS rejeCJ[. Promise.all(proms).then(vals => console.log(vals)) // [1,2,3]

Promise.any(proms).then(val => console.log(val)) // 1

The fulfilled value iIs the value of the first input
oromise to be fulfilled

Other combinators exist

55 I DistriN=t

Promises: origins and other uses

- Compared to callbacks, promises make delayed computation
explicit as data

- Managing delayed computation using a promise-like concept is an old
idea in computer science

(+ (future <el>) (future <e2>))

- First mention: a 1976 paper by Daniel P. Friedman (the author of this

course's textbookl) eval eval Parallel
on/
- First explored in the context of parallel computing in Lisp-like languages evaluation:
(+ wvall val2)
- Later also explored in the context of distributed computing to represent
the result of non-blocking remote procedure calls eval

- JavaScript’s promises were influenced by Promises in the £ programming
language (Miller, 1997), with additional influences from the Twisted result
framework’s “Deferred” objects (a node.js-like framework for Python),
which were ported to JavaScript in the Dojo framework (Zyp, 2007)

- Wikipedia has a reasonable page on the topic to learn more: https://
en.wikipedia.org/wiki/Futures and promises

56 I DistriN=t

https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises

Related concepts in other programming
languages and frameworks: “futures’,

)) 11

“deferreds’, “tasks’.

Many differences in terms of API: explicit
vs implicit use (Is Promise<T> a subtype
of T7?), read-only vs read-write access to
the Promise’s value, blocking vs non-
blocking access to the value.

Beware that terms are used inconsistently
across languages! (E.g. a Scala Promise
IS not identical to a JavaScript Promise)

57

C#: Task<T>

Java: CompletableFuture<T>

Python: asyncio. Future

Swift: Tasks and async

Scala: Future[T] and Promise[T]

IS DistriN=t

Compared to callbacks, promises make
delayed computation explicit as data

Senefits:

Delayed computation can now be
composed through standard function
composition

Secause Promise objects explicitly
distinguish success from failure paths, they
support principled handling and
automatic propagation of errors (versus
manual error propagation with callbacks)

58

Sut:

We must still wrap delayed computation
in nested functions (syntax overhead)

We still cannot use our familiar
sequential control flow constructs
(e.g. while-loops, return statement, try-
catch-finally statement) when dealing
with asynchronous activities

Can we have our cake and eat it too?

IS DistriN=t

Async functions

Modern (post-2017) versions of JavaScript support two new
keywords to manage asynchronous activities using standard
sequential control flow: async and await

async Iis a modifier that can be used to mark a function as an
Async function

await expr is an expression that evaluates expr to a Promise
value p and then turns the continuation of the enclosing Async
function into a delayed computation on p (as if wrapping the
code that follows in a function £ and calling p.then(f))

The await statement can only occur syntactically directly
within the body of an Async function

Async functions always return a Promise. In TypeScript, the
return type of an Async function must be of type Promise<T>

59

function readFile(path: string): Promise<string>;

// Promise-based asynchronous call

let promise = readFile("hello.txt");
promise.then(function (content) {

// use content
}, function (err) {

// handle error

})s

// asynchronous call using async/await

async function() {
try {

let content = await readFile("hello.txt");
// use content (it is a string, not a promise!)

} catch (err) {
// handle error

}
¥

I DistriN=t

Async functions combine sequential control flow with asynchronous execution

function stepl(value): Promise;

function run() {

stepl()
.then(valuel => step2(valuel))
.then(value2 => step3(value2))
.then(value3 => step4(value3))
.then(valued4 => {

// do something with value4
})
.catch(error => {

// handle any error here

1)
}

60

function stepl(value): Promise;

async function run() {

try {
let valuel = await stepl();
let value2 = await step2(valuel);
let value3 = await step3(value2);
let valued4 = await step4(valuel);

// do something with value4
} catch (error) {
// handle any error here

I DistriN=t

Async functions combine sequential control flow with asynchronous execution

function stepl(value): Promise;

function run() {

stepl()
.then(valuel => step2(valuel))
.then(value2 => step3(value2))
.then(value3 => step4(value3))
.then(valued4 => {

// do something with value4
})
.catch(error => {

// handle any error here

1)
}

61

function stepl(value): Promise;

async function run() {

try {
let valuel = await stepl();
let value2 = await step2(valuel);
let value3 = await step3(value2);
let valued4 = await step4(value3l);

// do something with value4
} catch (error) {
// handle any error here

I DistriN=t

Async functions versus Promises: examples

async function foo() { function foo() {

return 42; return Promise.resolve(42);
} }

async function foo2() { function foo2() {
throw new Error("reason") return Promise.reject(new Error("reason"))
\ —> |,
async function bar() { function bar() {
let vl = await foo(); return foo()
let v2 = await foo(); [::::[::> .then(vl => (foo().then(v2 => vl + v2)));
return vl + v2; }
}

62 I DistriN=t

ASyNnc functions versus Promises: more examples

// download multiple files in parallel
function fetchAll(urls: string[]): Promise<string>[];

// process a single file
function process(file: string): Promise<string>;

// download in parallel, then process sequentially
async function processSequentially(urls) {

let promises = fetchAll(urls);

let results = []

for (let fileP of promises) {
try {
let file = await fileP;
results.push(await process(file));
} catch (err) {
results.push(undefined);

}
¥

return results;

63

I DistriN=t

ASyNnc functions versus Promises: more examples

// download multiple files in parallel
function fetchAll(urls: string[]): Promise<string>[];

// process a single file
function process(file: string): Promise<string>;

// download in parallel, then process sequentially
async function processSequentially(urls) {

let promises = fetchAll(urls);

let results = []

for (let fileP of promises) {
try {
let file = await fileP;
results.push(await process(file));
} catch (err) {
results.push(undefined);

}
¥

return results;

64

I DistriN=t

ASyNnc functions versus Promises: more examples

// download multiple files in parallel
function fetchAll(urls: string[]): Promise<string>[];

// process a single file
function process(file: string): Promise<string>;

// download in parallel, then process sequentially
async function processSequentially(urls) {

let promises = fetchAll(urls);

let results = []

for (let fileP of promises) {
try {
let file = await fileP;
results.push(await process(file));
} catch (err) {
results.push(undefined);

}
¥

return results;

65

// download multiple files in parallel
function fetchAll(urls: string[]): Promise<string>[];

// process a single file
function process(file: string): Promise<string>;

// download in parallel, then process sequentially
function processSequentially(urls) {

let promises = fetchAll(urls);

let results = [];

function processNext(promises, i) {
if (i === promises.length)
return Promise.resolve(results);

return promises[i]
.then(file => process(file), err => undefined)
.then(result => {
results.push(result);
return processNext(promises, i+l);

})s
}

return processNext(promises, 9);

I DistriN=t

ASyNnc functions versus Promises: more examples

// download multiple files in parallel
function fetchAll(urls: string[]): Promise<string>[];

// process a single file
function process(file: string): Promise<string>;

// download in parallel, then process sequentially
async function processSequentially(urls) {

let promises = fetchAll(urls);

let results = []

for (let fileP of promises) {
try {
let file = await fileP;
results.push(await process(file));
} catch (err) {
results.push(undefined);

}
¥

return results;

66

// download multiple files in parallel
function fetchAll(urls: string[]): Promise<string>[];

// process a single file
function process(file: string): Promise<string>;

// download in parallel, then process sequentially
function processSequentially(urls) {

let promises = fetchAll(urls);

let results = [];

return promises.reduce((waitForPrev, promise) => {
return waitForPrev
.then(_ => promise)
.then(file => process(file), err => undefined)
.then(result => { results.push(result); });
}, Promise.resolve(undefined))
.then(_ => results);

¥

I DistriN=t

Wrap up

67 I DistriN=t

- Javascript is “a Lisp in C’s clothing”: it has C-like syntax, but Lisp-like first-class functions and
closures

- Javascript is a “dynamic language”: flexible, but sometimes dangerous

- JavaScript is a “scripting language”: it is embedded in a “host” environment

Most JavaScript host environments use an event loop execution model

-+ SiImple, single-threaded execution. But: computation or |/O must never block!

Hence, computation must often be delayed until events arrive, or until responses are available
from earlier asynchronous requests. How to manage delayed computation”

-+ \We have reviewed three technigues: Callbacks, Promises and Async functions.

68 IS DistriN=t

EXxercise session

Focus on the use of Promises and Async functions.

- Available on GitHub: https://github.com/tvcutsem/promises-exercises

69 I DistriN=t

https://github.com/tvcutsem/promises-exercises

