KU LEUVEN

Exploring the design space of smart contract languages

Tom Van Cutsem
March 2023
IFIP WG 2.16 Delft Meeting

tvcutsem.github.io be.linkedin.com/in/tomvc github.com/tvcutsem twitter.com/tvcutsem @tvcutsem@techhub.social

https://github.com/tvcutsem
https://be.linkedin.com/in/tomvc
https://twitter.com/tvcutsem
https://tvcutsem.github.io
https://techhub.social/@tvcutsem

DistriNet in a Nutshell (incl. capabllities in applied research)

100+ FTEs

10+ professors
10+ research managers
4 business office
10+ postdocs
55+ PhD students

Distributed

20+ ongoing projects
Software

Fundamental S’ggtseiglc Collaborative Ready-to-
research P research market

Secure
Software

O N ﬂ'—%
B e
ENERGY TELECOMMUNICATIONS CHEMICALS MANUFACTURING A

P
6 spin off EOft_ware_ ,’,____,‘, @.E g /8 [[[]
30+ years companies ngineering
A 100 + i n*str)hcolla%ratl@s
() ,

UTILITIES PHARMACEUTICAL

DistriN=t

Research agenda

- Web3 and decentralized computing technologies

Security, privacy & scalability of blockchain systems
Programmable blockchains (smart contracts)

Finding better ways to bridge “Web2” and “Web3”

CYBERSECURITY & /
FLANDERS /(-) V|aamse
BUILDING YOUR DIGITAL FUTURE (\

\ overheid

'

https://cybersecurity-research.be

IS DistriN=t

Web3: a growing developer ecosystem

Full-Time Developers Since Launch | 50+ Avg Developers
2,200
2,000
y Ethereum
1,800
=
% 1,600
O o Launched less than Launched more than
. o 1,400
QEJ a 7 years ago 7 years ago
—
= 2 1,200
Q &
o 2 1,000
;:—_‘
5 H0o Po-_l'kfa_\dot
L
600
400
200 BNB Chaln1 Bitcoin
) .] M&Oﬁ?pt-rmrsm‘-.Acl'golran'd 'i’heB |
) 1 Yr 2 Yrs 3 Yrs 4 Yrs 5 Yrs 6 Yrs 7 Yrs 8 Yrs 9 Yrs 10 Yrs 11 Yrs 12 Yrs 13 Yrs
Years Since First Commit

(Source: Electric Capital, blockchain developer report, January 2023)

4 B DistriN=t

Application-specific General-purpose

VS

ethereum

IS DistriN=t

What Is a smart contract?

A software program that automatically moves digital assets
according to arbitrary pre-specified rules

(Vitalik Buterin, Ethereum White Paper, 2014)

6 B DistriN=t

What Is a smart contract?

A software program that can receive, store & send “money”

Essentially, a program with its own “bank account”

7 B DistriN=t

SMmart contracts: basic principle

A vending machine is an automaton that can trade physical assets

<::| 1. insert coins
L_BS E:> 2. dispense drink

E—

s i I “EEN PR S

8 B DistriN=t

SMmart contracts: basic principle

A smart contract iIs an automaton that can trade digital assets

' —~—— _—
R i
. |
SOTN v .- . - |’

functior vo (address spendar, uintiS6 wvalue)

ret s (bool success

allowance [(mec.sencder] | spendar] = walue 1 t d | | lt ‘ [| t k
functioe rovedndCal. (addreas spender pint2d value, bytes extraData)

el s (bool suocess

tokarRecipiert speades = tokecRaciplent | specdec

LD (appoove | spender, Wvalue)) |

I wavelppiornl (s . mwonimi vl Lils salinlaln
etarr truoe

funotion transferfy (address from adiress o, wint2s4 value) retu s (ool swecess) |

12 balanceUf[from] < _valoe) throw

A sl aimef [' * value ~ Laloss [w) Lie s

12 (_value > allowance(_from) (meg.sender)] tirow

balancedf([from] «= _value

balancedt[to] += wvalue . ‘ 1 1 i

allowance [from] [mag.sendesz) <= wvalue

Transter from t value)

retusn true

|]

function () |

tArow

or electronic rights

9 B DistriN=t

But who should we trust to faithfully execute the automaton’s code?

A smart contract iIs an automaton that can trade digital assets

<::| 1. Insert digital coins (tokens)
|::> 2. dispense other digital assets

or electronic rights

code

10 B DistriN=t

Delegate trust to a decentralised network

A smart contract is a replicated automaton that can trade digital assets

<::| 1. Insert digital coins (tokens)
|::> 2. dispense other digital assets

or electronic rights

replicated code
11 B DistriN=t

Blockchains as computers that can make “credible commitments”

>

v

athereum

One single virtual computer
smart contract with strong trust guarantees

Many (1000s) untrustworthy physical computers
12 B DistriN=t

But... one must still trust the contract code

Once deployed, a smart contract Is

immutable
Small bugs may have big consequences pye—
A $50 Million Heist Unleashes High-
Stakes Showdown in Blockchain
Re-entrancy hazard — 2016 DAO attack

ICs C v ATCHLIST PRO &
THE FINTECH EFFECT

Incorrect code initialization — 2017 Parity

walletbug e

‘Accidental’ bug may have frozen
$280 million worth of digital coin

FFFFF

13 IS DistriN=t

Need better/safer contract languages

- Cambrian explosion of new smart contract
languages In the last 5 years

- Solidity, Scilla, Flint, Obsidian, Move, Vyper,
Matoko, Plutus, Zoe, Michelson, Clarity, Rholang,

14

RRRRRR

IS DistriN=t

PL Design & Smart Contracts

6Y

CHAPTER 3 ‘

The Next 700

Smart Contract Languages

“[...] we must systematise [language] design so that a new
language is a point chosen from a well-mapped space, rather
31 INTRODUCTION than a laboriously devised construction”

Smart contracts are a mechunism for expressing replicated computations powered by a decentralized

Ilya Sergey, Yale-NUS College and National Untvernity of Singapore, Singapore

consensus protocol [Szabo 1994]. They are most commeoenly used to define custon logic for trans . ,
actions operaring over a blockchain—rhar is, a decentralized Ryzantine-faulr-rolerant distributed - Peter I_and I n ; “The NeXt 700 Prog ram m | ng I_ang uag eS” ; 1 966
ledger [Bano et al. 2019, Pirlea and Sergey 2018], In addition to a typical state of computations, a
blockchain stores a mapping from accounis (public keys or addresses) to quantities of fokens owned by
said accounts. Execurion of an arbitrary program (2ka a smarr canrracr) is done by miners, who run
the computations and maintain the distributed ledger iIn exchange for 4 combination of gas (transac

tion fees based on the execution length, denominated in the intrinsic tokens and paid by the account
calling the smart contract) and black reweards (inflationary issuance of fresh tokens by the underly-

ing protocol). One distinguishing property of smart contracts, not found in standard computational

sertings, is the management of token rransfers hetween accounts. While simple farms of smarr con-

llya Sergey, “The Next 700 Smart Contract Languages”
in Principles of Blockchain Systems, 2021

15 IS DistriN=t

PL Design & Smart Contracts

Move Zoe

Solidity Seeneukc s Cosmos

Figure 1.1: Language Design Trade-off. The dashed line shows EVM'’s design choices.

16 B DistriN=t

Running example: a Kickstarter-style crowdfunding contract

et %ﬁ 1. Backers deposit tokens (pledge support)

“ 2. Wait until deadline to see it the goal was met

3a. Either the backers withdraw their share. ..

3b. or the beneficiary withdraws the full deposit

>
=

Crovvdfundlng contract

17 B DistriN=t

Running example: a Kickstarter-style crowadfunding contract

%ﬁ 1. Backers deposit tokens (pledge support)

2. Accepting
donations

* 2. Wait until deadline to see If the goal was met

deadline passed AND
amount reached

deadline passed AND

amount not reached %
3a. Crowdfund /

3a. Either the backers withdraw their share. ..

SUCCESS

3b. or the beneficiary withdraws the full deposit

3b. Crowdfund

falled

18

m DiStle:t

Solidity on Ethereum

B DistriN=t

Solidity

- Designed by Gavin Wood (~2013-2014)

- Native language of the Ethereum ecosystem

solidity
+ Contracts = state + functions ,
- JavaScript-like syntax

- Compiles to EVM bytecode

- By far the most popular “Web3” language

20 IS DistriN=t

The crowdfunding contract in Solidity

contract Crowdfunding {

}21

address public owner; // the beneficiary address
uint256 public deadline; // campaign deadline in number of days
uint256 public goal; // funding goal in ether

mapping (address => uint256) public backers; // the share of each backer

constructor(uint256 numberOfDays, uint256 _goal) {
owner = msg.sender;
deadline = block.timestamp + (numberOfDays * 1 days);
goal = goal;

}
function donate() public payable {

require(block.timestamp < deadline); // before the fundraising deadline
backers[msg.sender] += msg.value;

¥

function claimFunds() public {
require(address(this).balance >= goal); // funding goal met
require(block.timestamp >= deadline); // after the withdrawal period
require(msg.sender == owner);
payable(msg.sender).transfer(address(this).balance);

}

function getRefund() public {
require(address(this).balance < goal); // campaign failed: goal not met
require(block.timestamp >= deadline); // in the withdrawal period
uint256 donation = backers[msg.sender];
backers[msg.sender] = 0;
payable(msg.sender).transfer(donation);

(Based on: llya Sergey, “The next 700 smart contract
languages”, Principles of Blockchain Systems 2021)

B2 DistriN=t

The crowdfunding contract in Solidity

contract Crowdfunding {

}22

address public owner; // the beneficiary address
uint256 public deadline; // campaign deadline in number of days
uint256 public goal; // funding goal in ether

mapping (address => uint256) public backers; // the share of each backer

constructor(uint256 numberOfDays, uint256 goal) {
owner = msg.sender;
deadline = block.timestamp + (numberOfDays * 1 days);
goal = goal;

}
function donate() public payable {

require(block.timestamp < deadline); // before the fundraising deadline
backers[msg.sender] += msg.value;

¥

function claimFunds() public {
require(address(this).balance >= goal); // funding goal met
require(block.timestamp >= deadline); // after the withdrawal period
require(msg.sender == owner);
payable(msg.sender).transfer(address(this).balance);

}

function getRefund() public {
require(address(this).balance < goal); // campaign failed: goal not met
require(block.timestamp >= deadline); // in the withdrawal period
uint256 donation = backers[msg.sender];
backers[msg.sender] = 0;
payable(msg.sender).transfer(donation);

6

Owner
(the beneficiary of the crowdfunding action)

claimFunds()

>’ Crowdfunding
2 contract
donate()
getRefund()

Backers
(the parties that donate funds)

l constructor()

B2 DistriN=t

The crowdfunding contract in Solidity

contract Crowdfunding {

}23

address public owner; // the beneficiary address
uint256 public deadline; // campaign deadline in number of days
uint256 public goal; // funding goal in ether

mapping (address => uint256) public backers; // the share of each backer

constructor(uint256 numberOfDays, uint256 _goal) {
owner = msg.sender;
deadline = block.timestamp + (numberOfDays * 1 days);
goal = goal;

}
function donate() public payable {

require(block.timestamp < deadline); // before the fundraising deadline
backers[msg.sender] += msg.value;

¥

function claimFunds() public {
require(address(this).balance >= goal); // funding goal met
require(block.timestamp >= deadline); // after the withdrawal period
require(msg.sender == owner);
payable(msg.sender).transfer(address(this).balance);

}

function getRefund() public {
require(address(this).balance < goal); // campaign failed: goal not met
require(block.timestamp >= deadline); // in the withdrawal period
uint256 donation = backers[msg.sender];
backers[msg.sender] = 0;
payable(msg.sender).transfer(donation);

Instructions to deposit and
withdraw money (ether)

B2 DistriN=t

The dangers of iImperative code: a faulty crowdfunding contract

contract Crowdfunding {

}24

Faulty

address public owner;
uint256 public deadline;
uint256 public goal;
mapping (address => uint256) public backers;

constructor(uint256 numberOfDays, uint256 goal) public {
owner = msg.sender;
deadline = block.timestamp + (numberOfDays * 1 days);
goal = goal;

}
function donate() public payable {

require(block.timestamp < deadline);
backers[msg.sender] = msg.value;

¥

function claimFunds() public {
require(address(this).balance >= goal);
require(block.timestamp >= deadline);
require(msg.sender == owner);
payable(msg.sender).transfer(address(this).balance);

}

function getRefund() public {
require(address(this).balance < goal); // goal not met
require(now >= deadline); // in the withdrawal period
uint256 donation = backers[msg.sender];
payable(msg.sender).transfer(donation);
backers[msg.sender] = 0;

contract Crowdfunding {

Original
address public owner; EJ
uint256 public deadline;
uint256 public goal;

mapping (address => uint256) public backers;

constructor(uint256 numberOfDays, uint256 goal) {
owner = msg.sender;
deadline = block.timestamp + (numberOfDays * 1 days);
goal = goal;

}
function donate() public payable {

require(block.timestamp < deadline);
backers[msg.sender] += msg.value;

¥

function claimFunds() public {
require(address(this).balance >= goal);
require(block.timestamp >= deadline);
require(msg.sender == owner);
payable(msg.sender).transfer(address(this).balance);

}

function getRefund() public {
require(address(this).balance < goal);
require(block.timestamp >= deadline);
uint256 donation = backers[msg.sender];
backers[msg.sender] = 0;
payable(msg.sender).transfer(donation);

B2 DistriN=t

A long list of vulnerabilities in Solidity contracts

SWC Registry

Smart Contract Weakness Classification and Test Cases

The following table contains an overview of the SWC registry. Each row consists of an SWC identifier (ID), weakness title, CWE parent and list of
related code samples. The links in the ID and Test Cases columns link to the respective SWC definition. Links in the Relationships column link to

the CWE Base or Class type.
ID Title Relationships Test cases
SWC-136 Unencrypted Private CWE-767: Access to Critical Private e odd_even.sol
Data On-Chain Variable via Public Method « odd_even_fixed.sol

SWC-135 Code With No Effects CWE-1164: Irrelevant Code e deposit_box.sol
« deposit_box_fixed.sol
« wallet.sol
« wallet_fixed.sol

SWC-134 Message call with CWE-655: Improper Initialization « hardcoded_gas_limits.sol

hardcoded gas amount

SWC-133 Hash Collisions With CWE-294: Authentication Bypass by e access_control.sol
Multiple Variable Length Capture-replay e access_control_fixed_1.sol
Arguments

e access_control_fixed_2.sol

25 B DistriN=t

Move on Aptos

B DistriN=t

Vove

+ Origins in Facebook’s Diem (nee Libra) project

- Green field language design for smart contracts

- Rust-like, with custom virtual machine Move: A Language With Programmable

Resources

Sarm Blackshear, Evan Cheng, Cavid L. Dill, Victor Gao, Ben Maurer, Todd Nowacki, Al'stair Pots,
Shaz Qadeer, Rain, Dario Russi, Stephane Sezer, T'm Zaxian, Runtian Zhou *

+ Resource types: linear types to track objects R T
with monetary value (avoid accidental copies or

and should be read in that context.

d rO S) Abstract. We present Move, a safe and flexible programming language for the Libra Blockchain [1]/2].
p Move is an executable bytecode language used to implement custom transactions and smart contracts.
The key feature of Move is the ability to define enstom resonrce types with semantics inspired by linear
logic []: a resource can never be copied or implicit.y discarded, only moved between program storage
locations. These safety guarantees are enforeed statically by Move’s type system. Despite these
special protections, resources are ordinary program values they can be stored in data structures,
. " passed as arguments o procedures, and s0 on. First class resources are a very generzl concepr that
® N OW u Sed aS part Of AptOS an d S u I b ‘ OC kC h al ﬂ S programmers can use not only to implement safe digital assets but also to write correct business
logic for wrapping assets and enforcing aceess control policies. The safety and expressivity of Mave
have enabled us to implement significant parts of the Libra protocol in Move, including Libra coin.

(ransaction processing, and validator managewent.

27 IS DistriN=t

Move’s Global Storage account model

Le_aeno‘:
7)) Module ouner
Global Storage g)sejos;-t) owner
~ - onor
7/l No owner
S
G {I/-'WW. ’;",",lfl/r 7Y, 7

i

74

/
/ \\\\\
N
= <~ Z N — N o
7 OFERY,..icrowdfunding::Crewdfund -
rOxCOFES‘l...::crowbl?unolingzzbqoosﬁ ?;OFESQ...::cmudPumhng::bepos-h gg “e "gEEre ng\ (m(oo!ule OxCOFES‘-(...::crowo(%v\o(Img\
¢ , ¢
COIN: Qo?anaJue:?OO} COIN! Coianalue.SOO? ?oa' .uéq' // ‘?YCCCOAG here

+ | P jewllne; u6‘:>,r< Y
\\ - onors: veet address, \

T ~—— ;—j n_of _donors: uéd S —— 7

LK wir\?: ubs

28 B DistriN=t

Crowdfunding contract in Move

module crowdfunding {

struct Deposit<phantom CoinType> has key {
coin: Coin<CoinType>,

¥

struct CrowdFunding<phantom CoinType> has key {
goal: u64,
deadline: u64,
backers: vector<address>,
funding: u64,

public entry fun initialise crowdfunding<CoinType>(account: &signer, goal: u64, minutes: u64) {
let addr = signer::address_of(account);
assert! (addr == @owner, EONLY_DEPLOYER _CAN INITIALISE);
let now = timestamp::now seconds() / MINUTE_CONVERSION FACTOR;
move_to(account, CrowdFunding<CoinType> { -
goal: goal,

The crowdfunder stores a

packers: vecton: renpty<address>(), = ‘CrowdFunding’ resource to
e track campaign state

29 IS DistriN=t

Crowdfunding contract in Move

public entry fun donate<CoinType>(account: &signer, fund addr: address, amount: u64) acquires Deposit, CrowdFunding {

30

assertCrowdfundingInitialised<CoinType>(fund addr);
assertDeadlinePassed<CoinType>(fund _addr, false);

let addr = signer::address_of(account);
assert!(coin::balance<CoinType>(addr) >= amount, ENO SUFFICIENT FUND);
let coin_to deposit = coin::withdraw<CoinType>(account, amount);

let val = coin::value<CoinType>(&coin_to deposit);

let cf = borrow global mut<CrowdFunding<CoinType>>(fund addr);

if (l!exists<Deposit<CoinType>>(addr)) {
let to deposit = Deposit<CoinType> {coin: coin_to_deposit};;gﬂgms
move_to(account, to deposit); !

—_Each backer receives
let backers = &mut cf.backers; ‘ Ly
vector: :push back<address>(backers, addr); a DepOSIt resource to

} else { : :
let deposit = borrow_global mut<Deposit<CoinType>>(addr); traCk thelr dOﬂatIOﬂ

coin: :merge<CoinType>(&mut deposit.coin, coin_ to deposit);

}

cf.funding = cf.funding + val;

IS DistriN=t

Crowdfunding contract in Move

public entry fun claimFunds<CoinType>(account: &signer, fund addr: address) acquires Deposit, CrowdFunding {
assertCrowdfundingInitialised<CoinType>(fund_addr);
assertGoalReached<CoinType>(fund addr, true);
assertDeadlinePassed<CoinType>(fund _addr, true);
let addr = signer::address_of(account);
assert!(addr == fund_addr, EONLY_ CROWDFUNDING_ OWNER);
let backers = &mut borrow global mut<CrowdFunding<CoinType>>(fund_addr).backers;
withdrawCoinsFromDeposits<CoinType>(addr, backers);
destroyCrowdfunding<CoinType>(fund_addr);

fun withdrawCoinsFromDeposits<CoinType>(fund addr: address, backers: &mut vector<address>) acquires Deposit {
while (!vector::is empty<address>(backers)) {
let backer _addr = vector::pop back<address>(backers);
let Deposit<CoinType>{ coin: coins } = move_ from<Deposit<CoinType>>(backer addr);
coin: :deposit(fund addr, coins);

‘Deposit’ resource Is destroyed
and coins are added to
crowdfunding balance

31 IS DistriN=t

How does Move address Solidity’s most common vulnerabilities?

32

Not so smart contracts

Integer Overflow
Forced Ether Reception
Unprotected Function

Wrong Constructor Name

Reentrancy

Unchecked External Call
Variable Shadowing
Incorrect Interface

Bad Randomness

Denial of Service

Race Condition

Crytic, (2018). Not so smart contracts. https://qgithub.com/crytic/not-so-smart-contracts

Overflow/ Underflow
Access Control
Access Control

Access Control

Constructor naming
Logic

Logic

Logic

Wrong Interface
Blockchain Infrastructure
Blockchain Infrastructure

Blockchain Infrastructure

Sechbit, (2018). Awesome buggy erc20 tokens. https://github.com/sec-bit/awesome-buggy-erc20-tokens

IS DistriN=t

https://github.com/crytic/not-so-smart-contracts
https://github.com/sec-bit/awesome-buggy-erc20-tokens

Certik’s “immovables”

- Bad smells in Move code

Blogs Tech & Dev

Moving the Inmovables: Lessons Learned
From Our Aptos Smart Contract Audit

14-11-2022

00000

Move is a programming language specifically designed for building secure and formally verified
smart contracts. Move's language features provide a strong set of security protections through
strict type enforcement and load-time verifications. Developers who master Move’s built-in
resources and programming patterns can produce more secure projects than those developed in
conventional languages that lack these features.

33 IS DistriN=t

Resurrecting unsafe types (e.g. unsigned int with overflow)

- Example: reintroducing unsafe
integer arithmetic (with underflow/
overflow) when porting code from

34

Solidity...

L)
—

&4
7
4
|
'
5

N fd ot ot et e o fd pd fd
2 O 00 ~J O | : I N

struct I128 has copy, drop, store {
bits: ul28

}

const U128 WITH_FIRST_BIT_SET: ul28 =

public fun is_neg(x: &I128): bool {
x.bits > U128 WITH_FIRST_BIT_SET
¥

public fun add(a: &I128, b: &I128): 1128 {
if (a.bits >>
if (b.bits >>
return I128 { bits: a.bits + b.bits }
} else {
i1f (b.bits (1 <<) <= a.bits)

return I128 { bits: a.bits - (b.bits -

return I128 { bits: b.bits - a.bits }
}
} else {
if (b.bits >> == @) {
if (a.bits = (1 <<) <= b,
return I128 { bits: b.bits -
return I128 { bits: a.bits -
} else {
return I128 { bits: a.bits +

IS DistriN=t

Misunderstood reference safety

+ Example: marking important structs [
struct Config has key {

with copy, drop capabilities thus 2 stores: vector<Cotnstores,

}

bypaSSing the borrOWS CheCker (- struct CoinStore has copy, store, drop {

caoint_type: String,

fees: u8,

const ERROR_COIN_TYPE_NOT_FOUND: u64 = 3;

fun borrow _mut(account: &signer, coin_type: &String): CoinStore acquires Config
let address = signer::address_of(account);
assert!(address == @contract_owner, ERROR_PERMISSION_ DENIED);

let config = borrow_global_mut<Config>(address);

let (e, 1) = contains(&config.staores, coin_type);
if (e) {
*vector: :borrow_mut(&mut config.stores, 1)
} else {
abart ERROR_COIN TYPE NOT_FQUND
}
}

public entry fun increase f
let coin_type =

35

Z0e on Agoric

IS DistriN=t

Agoric: use Javascript to write secure smart contracts for Web3

a1 AGORIC

Digital assets
managed by
/0e framework

written in
Hardened JavaScript

executing on
A public blockchaln
(Tendermint / Cosmos)

public chain quorum solo quorum

37 T DistriN=t

Object-capabillity security

“(Language-based) Security as extreme Modularity”

g
(AR |

- Mark S. Miller

Modularity: avoid needless dependencies (to prevent bugs)

Security: avoid needless authority (to prevent exploits)

38 B DistriN=t

"Only connectivity begets connectivity”

Three simple rules that describe how authority can be acquired in a capability-secure system:

// adlice executes:

Creation: e.g. alice creates carol herself let carol = makeCarol()
Bob

Endowment: e.g. at creation, alice Is 1/ alice’s constructor: ,,
endowed with authority to access carol function makeAlice(carol) {.} ‘@‘

_ // alice executes:
Transfer: e.qg. alice transfers carol to bob bob . foo(carol)

30 T DistriN=t

/Zoe ERTP: Electronic Rights [ransfer Protocol

40

In Zoe, digital assets are represented as Objects

Access to a Payment object => authority to spend the asset

J—
__Indicates components _Prand
(brana) Must be of the same . . .
\) g N
" brand to interact. mint brand
lssuer
mints
Validates and stores balances’
N records
digital assets
Transferred in .
What kind? How much?
‘I!:IE!!!& bbbbb
Deposit Withdraw
assets into assets into

brand - .
m brand)

IS DistriN=t

const start = zcf => { if" s |Nterface to Zoe

assertIssuerkKeywords(zcf, harden(['Donation']));
const { coinBrand, deadline, goal } = zcf.getTerms();

const target = AmountMath.make(coinBrand, goal);
const backerseats = [];

const claimOfferHandler = seat => { .. }:
const donateOfferHandler = seat => { .. };
const reclaimOfferHandler = seat => { .. };

const creatorFacet = Far('creatorFacet', {
makeClaimInvitation: () => zcf.makeInvitation(claimOfferHandler, 'claim'),

r);

const donorFacet = Far('donorFacet', {
makeDonateInvitation: () => zcf.makeInvitation(donateOfferHandler, ‘donate'),
makeReclaimFundsInv: () => zcf.makeInvitation(reclaimOfferHandler, 'reclaim'),

r);

return harden({ creatorFacet, donorFacet }); Separate interfaces
}; per contract party

export { start };

B2 DistriN=t

const alphaCoin = makeIssuerKit("AlphaCoin");
const alphaCoinPurseBob = await E(alphaCoin.issuer).makeEmptyPurse();

// Bob donates 3@ AlphaCoins Users explicitly specify
const bobDonateInvitation = await E(donorFacet).makeDonateInvitation(); what assets a contract can

const bobProposal = harden({
give: { Donation: AmountMath.make(alphaCoin.brand, 30n) }, access. Zoe keeps these

exit: { waived: null }, " assets in escrow while the

});

//Bob
const bobPayment =

contract executes.

//Bob offers the invitation, the prop;iﬁéwand the payment to zoe and gets a seat in return
const bobSeat = await E(zoe).offer(bobDonateInvitation, bobProposal, harden({ Donation: bobPayment }));

//Bob should get an offer result which states that his donation has been made
await E(bobSeat).getOfferResult();

// 1f the campaign fails then Bob gets a refund
awalt E(bobSeat).getPayout('Donation').then(payment => alphaCoinPurseBob.deposit(payment));

B DistriN=t

const claimOfferHandler = seat => {

let totalAmount = AmountMath.make(coinBrand, 0n);
donors.forEach(donorSeat => {
totalAmount = AmountMath.add(totalAmount,
donatorSeat.getAmountAllocated('Donation', coinBrand), coinBrand);

F);

// 1T crowdfunding succeeded..
if (deadlinePassed() && AmountMath.isGTE(totalAmount, target)) A
donors.forEach(donorSeat => {
seat.incrementBy(donorSeat.decrementBy(harden(donorSeat.getCurrentAllocation())));
zcf.reallocate(donorSeat, seat);
donorSeat.exit();
)
seat.exit():
return ‘Donations claimed';

}

//1f there 1s still time left, notify that the deadline hasn't expired
seat.exit();
return 'The deadline has not yet passed';

b

B DistriN=t

const claimOfferHandler = seat => {

let totalAmount = AmountMath.make(coinBrand, On); APls for safe math with
donors.forEach(donorSeat => { currency amounts

totalAmount = AmountMath.add(totalAmount, ™% 4
donatorSeat. getAmount}“ ocated('Donation', coinBrand), coinBrand);

F);

// 1f crowdfunding succeeded.. V.
if (deadlinePassed() && AmountMath.isGTE(totalggount, target)) A

donors.forEach(donorSeat => {
seat.incrementBy(donorSeat.decrementBy(harden(donorSeat.getCurrentAllocation())));
zcf.reallocate(donorSeat, seat);
donorSeat.exit();

)

seat.exit();

return ‘Donations claimed':

}

//1f there 1s still time left, notify that the deadline hasn't expired
seat.exit();
return 'The deadline has not yet passed';

b

B2 DistriN=t

const claimOfferHandler = seat => {

let totalAmount = AmountMath.make(coinBrand, 0n);
donors.forEach(donorSeat => {
totalAmount = AmountMath.add(totalAmount,
donatorSeat.getAmountAllocated('Donation', coinBrand), coinBrand);

F);

// 1if crowdfunding succeeded.. 1
if (deadlinePassed() && AmountMath.isGTE(totalAmount, tard
donors.forEach(donorSeat => { !

seat.incrementBy(donorSeat. decrementBy(harden(donoﬁSeat getCurrentAllocation())));
zcf.reallocate(donorSeat, seat); e 7
donorSeat.exit(); L 1

r); e b APIs to access and modify

seat.exit(); ! . £ "
return ‘Donations claimed'; dlloCallon O asSets

} between parties

//1f there 1s still time left, notify that the deadline hasn't expired
seat.exit();
return 'The deadline has not yet passed';

b

B2 DistriN=t

/0e: programming patterns

Contract Requirements

Zoe v(0.24.0. Last updated August 25, 2022.

When writing a smart contract to run on Zoe, you need to know the proper format and other

expectations. (source: Agoric)

Interface objects must be explicitly made immutable (“hardened”)
Remote objects: must use eventual send API| to send async messages

+ Objects received from counterparty must first be verified with a trusted issuer
No static types: manual user input validation

Must carefully reason albout what objects to keep private

46 IS DistriN=t

General-purpose languages on the blockchain

B DistriN=t

Web3: a growing developer ecosystem

Full-Time Developers Since Launch | 50+ Avg Developers
2,200
2,000
Ethereum
2’ 1,800
=
% 1,600
O o Launched less than Launched more than
. © 1,400
QEJ a 7 years ago 7 years ago
—
= 2 1,200
v 3
o 2 1,000
a
:43‘ 500 (™ 0o kadot
- 1 :
400
200 BNB Chain /‘ o Bitcoin
Aval-anche
.Mooﬁgg%m -ﬂ;.rﬂ'lllﬁ:"
) >, °-1'5'n®pl-t-i'm-i"ém Al'gorand The , | ' .
0 1 Yr 2 Yrs 3 Yrs 4 Yrs 5 Yrs 6 Yrs 7 Yrs 8 Yrs 9 Yrs 10 Yrs 11 Yrs 12 Yrs 13 Yrs
Years Since First Commit

(Source: Electric Capital, blockchain developer report, January 2023)

48 B DistriN=t

Emerging Appchain SDK frameworks

Polkadot “Substrate” (Rust) Cosmos SDK (Go)

Other nodes in the network .

. \ Tendermint ABCI
\ =~ N Plugins Plugins Plugins

I ABCI

Consensus
Networking

Cosmos SDK

(source)

4

(source)

49 IS DistriN=t

Cosmos SDK: modules and keepers

50

Tendermint

Transaction relayed from the full-node's
Tendermint engine via DeliverTx

A

» Application

\ 4

1. Decode transactions received
from Tendermint.

2. Extract messages from the

transactions and perform basic

sanity checks.
3. Route messages to appropriate

module to be processed

Modules

Auth Bank
Commit state changes - pass
encoded transactions back to
Tendermint for broadcasting
Evidence Governance
Slashing Staking

N

N

Crisis Distribution
Mint Params
Supply Upgrade

B DistriN=t

Cosmos SDK: modules and keepers

x/{module_name}

I— client

— clui

| | query.go

| L— tx.go

L— testutil
— cli_test.go
L— suite.go

L— exported.go
keeper FECrnE
— genesis.go
— grpc_query.go
— hooks.go

— invariants.go
— keeper.go

— keys.go

— msg_server.go
L — querier.go
module

L — module.go

L— abci.go
simulation

— decoder.go
— genesis.go
|— operations.go
L— params.go

— {module_name}.pb.go
— autocli.go

— codec.go

— errors.go

— events.go

— events.pb.go

— expected_keepers.go
— genesis.go

— genesis.pb.go

— keys.go

— msgs.go

— params.go

— query.pb.go

— tx.pb.go

L README.md

- rr—°r > 1 " °

51

Keeper

—— genesis.go
—— grpc_query.go
—— hooks.go

—— 1nvariants.go
Keeper.go

—— Keys.go

—— mSQg_server.go
—— querler.go

func (k Keeper) AppendStep(ctx sdk.Context, step types.Step) uint64d {

count := k.GetStepCount(ctx)
step.StepId = count

store := prefix.NewStore(ctx.KVStore(k.storeKey), types.KeyPrefix(types.StepKey))

appendedValue := k.cdc.MustMarshal(&step)
store.Set (GetStepIDBytes(step.StepId), appendedValue)

Jper) GetStep(ctx sdk.Context, id uinté64) (val types.Step, found bool) {

: X prefix.NewStore(ctx.KVStore(k.storeKey), types.KeyPrefix(types.StepKey))

fe.Get (GetStepIDBytes(id))

Explicit read/write from/to the
blockchain (key-value store)

IS DistriN=t

Vulnerabllities in Cosmos code

Vulnerabilities
Not So Smart Contract Description
Incorrect signers Broken access controls due to incorrect signers validation
Non-determinism Consensus failure because of non-determinism
Not prioritized messages Risks arising from usage of not prioritized message types
Slow ABCI methods Consensus failure because of slow ABCI methods
ABCI methods panic Chain halt due to panics in ABCI methods
Broken bookkeeping Exploit mismatch between different modules' views on balances
Rounding errors Bugs related to imprecision of finite precision arithmetic

Unregistered message handler Broken functionality because of unregistered msg handler

Missing error handler Missing error handling leads to successful execution of a transaction that should have failed

(Source: Crytic)

52 IS DistriN=t

https://github.com/crytic/building-secure-contracts/tree/master/not-so-smart-contracts/cosmos

Vulnerabllities in Cosmos code: non-determinism

Non-determinism

Non-determinism in conensus-relevant code will cause the blockchain to halt. There are quite a few sources of non-determinism, some of
which are specific to the Go language:

e range iterations over an unordered map or other operations involving unordered structures
» Implementation (platform) dependent types like int or filepath.Ext

e goroutines and select statement

e Memory addresses

e Floating point arithmetic operations

» Randomness (may be problematic even with a constant seed)

» Local time and timezones

» Packages like unsafe, reflect,and runtime

53 B DistriN=t

Smart contract languages: summary

Assets
represented as...

Strengths

S | d t Integers: Straightforward imperative code. Base language too error-prone. Use
Ollal y mapping (address => uint) Accessible, familiar. libraries (OpenZeppelin). Reentrancy.

Global storage model requires
Reference safety, resource types. different way of structuring code.
“Immovables”.

Resource types:
MOVG struct Coin has key {...}

Payment and Purse objects: Must carefully follow coding idioms,

Reuse subset of a general-purpose

Z()e mint.mintPayment(amount) language (JavaScript). no language support for asset
management. Complex framework.
Coin objects managed by a Reuse general-purpose language Explicit save/restore of blockchain

Cosmos dedicated Bank module (Go). state. Avoid non-determinism.

Complex framework.

54 B DistriN=t

PL Design & Smart Contracts

Move Zoe

Solidity Seeneukc s Cosmos

Figure 1.1: Language Design Trade-off. The dashed line shows EVM'’s design choices.

55 B DistriN=t

Reality check: what actually gets used

TVL = Total value locked in smart contract programs

TVL Dominance 17 Languages v 31 mrt 2023
® Solidity 91.05%

® Vyper 6.91%

® Rust 0.7%

® Cairo 0.49%

® Bitcoin Script 0.24%
Haskell 0.19%
Ride 0.11%
C++ 0.11%

®C# 0.1%
Java 0.04%

Jul

(Source: Defillama, april 2023)
56 B DistriN=t

KU LEUVEN

Exploring the design space of smart contract languages

Tom Van Cutsem

Thanks for listening!

tvcutsem.github.io be.linkedin.com/in/tomvc github.com/tvcutsem twitter.com/tvcutsem @tvcutsem@techhub.social

https://github.com/tvcutsem
https://techhub.social/@tvcutsem
https://be.linkedin.com/in/tomvc
https://twitter.com/tvcutsem
https://tvcutsem.github.io

