
Exploring the design space of smart contract languages

Tom Van Cutsem 
March 2023

IFIP WG 2.16 Delft Meeting

twitter.com/tvcutsemgithub.com/tvcutsemtvcutsem.github.io be.linkedin.com/in/tomvc @tvcutsem@techhub.social

https://github.com/tvcutsem
https://be.linkedin.com/in/tomvc
https://twitter.com/tvcutsem
https://tvcutsem.github.io
https://techhub.social/@tvcutsem

Intro

2

20+ ongoing projects10+ professors
10+ research managers

4 business office
10+ postdocs

55+ PhD students

100+ FTEs

100 + industry collaborations

Distributed
Software

Secure
Software

Software
Engineering

DistriNet in a Nutshell (incl. capabilities in applied research)

30+ years
track record

1984
6 spin off

companies

Research agenda

• Web3 and decentralized computing technologies

• Security, privacy & scalability of blockchain systems

• Programmable blockchains (smart contracts)

• Finding better ways to bridge “Web2” and “Web3”

3

https://cybersecurity-research.be

Web3: a growing developer ecosystem

4

(Source: Electric Capital, blockchain developer report, January 2023)

Application-specific General-purpose

vs

What is a smart contract?

6

A software program that automatically moves digital assets
according to arbitrary pre-specified rules

(Vitalik Buterin, Ethereum White Paper, 2014)

What is a smart contract?

7

A software program that can receive, store & send “money”

Essentially, a program with its own “bank account”

Smart contracts: basic principle

• A vending machine is an automaton that can trade physical assets

8

1. insert coins

2. dispense drink

Smart contracts: basic principle

• A smart contract is an automaton that can trade digital assets

9

1. insert digital coins (tokens)

2. dispense other digital assets 
or electronic rights

code

But who should we trust to faithfully execute the automaton’s code?

• A smart contract is an automaton that can trade digital assets

10

1. insert digital coins (tokens)

2. dispense other digital assets 
or electronic rights

code

Delegate trust to a decentralised network

• A smart contract is a replicated automaton that can trade digital assets

11

1. insert digital coins (tokens)

2. dispense other digital assets 
or electronic rights

replicated code

Blockchains as computers that can make “credible commitments”

12

T0

S0 S1

T1

S2

smart contract

consensus

T0

S0 S1

Many (1000s) untrustworthy physical computers

One single virtual computer 
with strong trust guarantees

But… one must still trust the contract code

• Once deployed, a smart contract is
immutable

• Small bugs may have big consequences

• Re-entrancy hazard → 2016 DAO attack

• Incorrect code initialization → 2017 Parity
wallet bug

13

Need better/safer contract languages

• Cambrian explosion of new smart contract
languages in the last 5 years

• Solidity, Scilla, Flint, Obsidian, Move, Vyper,
Matoko, Plutus, Zoe, Michelson, Clarity, Rholang,
…

14

PL Design & Smart Contracts

15

Ilya Sergey, “The Next 700 Smart Contract Languages” 
in Principles of Blockchain Systems, 2021

“[...] we must systematise [language] design so that a new
language is a point chosen from a well-mapped space, rather

than a laboriously devised construction”

- Peter Landin, “The Next 700 Programming Languages”, 1966

PL Design & Smart Contracts

16

Move Zoe

Solidity Cosmos

17

Running example: a Kickstarter-style crowdfunding contract

1. Backers deposit tokens (pledge support)

3a. Either the backers withdraw their share…

crowdfunding contract

2. Wait until deadline to see if the goal was met

3b. or the beneficiary withdraws the full deposit

18

Running example: a Kickstarter-style crowdfunding contract

1. Setup

2. Accepting
donations

3b. Crowdfund
failed

3a. Crowdfund
success

deadline passed AND 
amount reached

deadline passed AND 
amount not reached

1. Backers deposit tokens (pledge support)

3a. Either the backers withdraw their share…

2. Wait until deadline to see if the goal was met

3b. or the beneficiary withdraws the full deposit

Solidity on Ethereum

Solidity

• Designed by Gavin Wood (~2013-2014)

• Native language of the Ethereum ecosystem

• Contracts = state + functions

• JavaScript-like syntax

• Compiles to EVM bytecode

• By far the most popular “Web3” language

20

The crowdfunding contract in Solidity

21

contract	Crowdfunding	{

				address	public	owner;				//	the	beneficiary	address 
				uint256	public	deadline;	//	campaign	deadline	in	number	of	days 
				uint256	public	goal;					//	funding	goal	in	ether 
				mapping	(address	=>	uint256)	public	backers;	//	the	share	of	each	backer

				constructor(uint256	numberOfDays,	uint256	_goal)	{ 
								owner	=	msg.sender; 
								deadline	=	block.timestamp	+	(numberOfDays	*	1	days); 
								goal	=	_goal;	

				} 
				function	donate()	public	payable	{ 
								require(block.timestamp	<	deadline);	//	before	the	fundraising	deadline 
								backers[msg.sender]	+=	msg.value;	

				}	

				function	claimFunds()	public	{ 
								require(address(this).balance	>=	goal);	//	funding	goal	met 
								require(block.timestamp	>=	deadline);	//	after	the	withdrawal	period 
								require(msg.sender	==	owner);	 
								payable(msg.sender).transfer(address(this).balance); 
				}	 
				function	getRefund()	public	{ 
								require(address(this).balance	<	goal);	//	campaign	failed:	goal	not	met	 
								require(block.timestamp	>=	deadline);	//	in	the	withdrawal	period	 
								uint256	donation	=	backers[msg.sender]; 
								backers[msg.sender]	=	0; 
								payable(msg.sender).transfer(donation);	 
				} 
}	

(Based on: Ilya Sergey, “The next 700 smart contract
languages”, Principles of Blockchain Systems 2021)

The crowdfunding contract in Solidity

22

contract	Crowdfunding	{

				address	public	owner;				//	the	beneficiary	address 
				uint256	public	deadline;	//	campaign	deadline	in	number	of	days 
				uint256	public	goal;					//	funding	goal	in	ether 
				mapping	(address	=>	uint256)	public	backers;	//	the	share	of	each	backer

				constructor(uint256	numberOfDays,	uint256	_goal)	{ 
								owner	=	msg.sender; 
								deadline	=	block.timestamp	+	(numberOfDays	*	1	days); 
								goal	=	_goal;	

				} 
				function	donate()	public	payable	{ 
								require(block.timestamp	<	deadline);	//	before	the	fundraising	deadline 
								backers[msg.sender]	+=	msg.value;	

				}	

				function	claimFunds()	public	{ 
								require(address(this).balance	>=	goal);	//	funding	goal	met 
								require(block.timestamp	>=	deadline);	//	after	the	withdrawal	period 
								require(msg.sender	==	owner);	 
								payable(msg.sender).transfer(address(this).balance); 
				}	 
				function	getRefund()	public	{ 
								require(address(this).balance	<	goal);	//	campaign	failed:	goal	not	met	 
								require(block.timestamp	>=	deadline);	//	in	the	withdrawal	period	 
								uint256	donation	=	backers[msg.sender]; 
								backers[msg.sender]	=	0; 
								payable(msg.sender).transfer(donation);	 
				} 
}	

Owner 
(the beneficiary of the crowdfunding action)

Crowdfunding 
contract

Backers 
(the parties that donate funds)

constructor() 
claimFunds()

donate() 
getRefund()

The crowdfunding contract in Solidity

23

contract	Crowdfunding	{

				address	public	owner;				//	the	beneficiary	address 
				uint256	public	deadline;	//	campaign	deadline	in	number	of	days 
				uint256	public	goal;					//	funding	goal	in	ether 
				mapping	(address	=>	uint256)	public	backers;	//	the	share	of	each	backer

				constructor(uint256	numberOfDays,	uint256	_goal)	{ 
								owner	=	msg.sender; 
								deadline	=	block.timestamp	+	(numberOfDays	*	1	days); 
								goal	=	_goal;	

				} 
				function	donate()	public	payable	{ 
								require(block.timestamp	<	deadline);	//	before	the	fundraising	deadline 
								backers[msg.sender]	+=	msg.value;	

				}	

				function	claimFunds()	public	{ 
								require(address(this).balance	>=	goal);	//	funding	goal	met 
								require(block.timestamp	>=	deadline);	//	after	the	withdrawal	period 
								require(msg.sender	==	owner);	 
								payable(msg.sender).transfer(address(this).balance); 
				}	 
				function	getRefund()	public	{ 
								require(address(this).balance	<	goal);	//	campaign	failed:	goal	not	met	 
								require(block.timestamp	>=	deadline);	//	in	the	withdrawal	period	 
								uint256	donation	=	backers[msg.sender]; 
								backers[msg.sender]	=	0; 
								payable(msg.sender).transfer(donation);	 
				} 
}	

Instructions to deposit and
withdraw money (ether)

The dangers of imperative code: a faulty crowdfunding contract

24

contract	Crowdfunding	{

				address	public	owner; 
				uint256	public	deadline; 
				uint256	public	goal; 
				mapping	(address	=>	uint256)	public	backers;	

				constructor(uint256	numberOfDays,	uint256	_goal)	public	{ 
								owner	=	msg.sender; 
								deadline	=	block.timestamp	+	(numberOfDays	*	1	days); 
								goal	=	_goal;	

				} 
				function	donate()	public	payable	{ 
								require(block.timestamp	<	deadline); 
								backers[msg.sender]	=	msg.value;	 
				}	

				function	claimFunds()	public	{ 
								require(address(this).balance	>=	goal);	 
								require(block.timestamp	>=	deadline); 
								require(msg.sender	==	owner);	 
								payable(msg.sender).transfer(address(this).balance); 
				}	 
				function	getRefund()	public	{ 
								require(address(this).balance	<	goal);	//	goal	not	met	 
								require(now	>=	deadline);	//	in	the	withdrawal	period	 
								uint256	donation	=	backers[msg.sender]; 
								payable(msg.sender).transfer(donation);	 
								backers[msg.sender]	=	0; 
				} 
}	

contract	Crowdfunding	{

				address	public	owner;				 
				uint256	public	deadline;	 
				uint256	public	goal;				 
				mapping	(address	=>	uint256)	public	backers;	

				constructor(uint256	numberOfDays,	uint256	_goal)	{ 
								owner	=	msg.sender; 
								deadline	=	block.timestamp	+	(numberOfDays	*	1	days); 
								goal	=	_goal;	

				} 
				function	donate()	public	payable	{ 
								require(block.timestamp	<	deadline);	 
								backers[msg.sender]	+=	msg.value; 
				}	

				function	claimFunds()	public	{ 
								require(address(this).balance	>=	goal); 
								require(block.timestamp	>=	deadline);	 
								require(msg.sender	==	owner);	 
								payable(msg.sender).transfer(address(this).balance); 
				}	 
				function	getRefund()	public	{ 
								require(address(this).balance	<	goal);		 
								require(block.timestamp	>=	deadline);		 
								uint256	donation	=	backers[msg.sender]; 
								backers[msg.sender]	=	0; 
								payable(msg.sender).transfer(donation);	 
				} 
}	

Faulty Original

A long list of vulnerabilities in Solidity contracts

25

Move on Aptos

Move

• Origins in Facebook’s Diem (neé Libra) project

• Green field language design for smart contracts

• Rust-like, with custom virtual machine

• Resource types: linear types to track objects
with monetary value (avoid accidental copies or
drops)

• Now used as part of Aptos and Sui blockchains

27

Move’s Global Storage account model

28

Crowdfunding contract in Move

29

module	crowdfunding	{ 
 
		struct	Deposit<phantom	CoinType>	has	key	{ 
				coin:	Coin<CoinType>, 
		} 

		struct	CrowdFunding<phantom	CoinType>	has	key	{ 
				goal:	u64, 
				deadline:	u64, 
				backers:	vector<address>, 
				funding:	u64, 
		} 

		public	entry	fun	initialise_crowdfunding<CoinType>(account:	&signer,	goal:	u64,	minutes:	u64)	{ 
				let	addr	=	signer::address_of(account); 
				assert!(addr	==	@owner,	EONLY_DEPLOYER_CAN_INITIALISE); 
				let	now	=	timestamp::now_seconds()	/	MINUTE_CONVERSION_FACTOR; 
				move_to(account,	CrowdFunding<CoinType>	{ 
						goal:	goal, 
						deadline:	now	+	minutes, 
						backers:	vector::empty<address>(), 
						funding:	0, 
				}); 
		} 

The crowdfunder stores a
‘CrowdFunding’ resource to

track campaign state

Crowdfunding contract in Move

30

public	entry	fun	donate<CoinType>(account:	&signer,	fund_addr:	address,	amount:	u64)	acquires	Deposit,	CrowdFunding	{	 
				assertCrowdfundingInitialised<CoinType>(fund_addr); 
				assertDeadlinePassed<CoinType>(fund_addr,	false); 
 
				let	addr	=	signer::address_of(account); 
				assert!(coin::balance<CoinType>(addr)	>=	amount,	ENO_SUFFICIENT_FUND); 
				let	coin_to_deposit	=	coin::withdraw<CoinType>(account,	amount); 
				let	val	=	coin::value<CoinType>(&coin_to_deposit); 
				let	cf	=	borrow_global_mut<CrowdFunding<CoinType>>(fund_addr);	 
 
				if	(!exists<Deposit<CoinType>>(addr))	{ 
								let	to_deposit	=	Deposit<CoinType>	{coin:	coin_to_deposit}; 
								move_to(account,	to_deposit); 
								let	backers	=	&mut	cf.backers; 
								vector::push_back<address>(backers,	addr); 
				}	else	{ 
							let	deposit	=	borrow_global_mut<Deposit<CoinType>>(addr);	 
							coin::merge<CoinType>(&mut	deposit.coin,	coin_to_deposit); 
				} 
				cf.funding	=	cf.funding	+	val; 
}

Each backer receives
a ‘Deposit’ resource to

track their donation

Crowdfunding contract in Move

31

fun	withdrawCoinsFromDeposits<CoinType>(fund_addr:	address,	backers:	&mut	vector<address>)	acquires	Deposit	{ 
				while	(!vector::is_empty<address>(backers))	{ 
								let	backer_addr	=	vector::pop_back<address>(backers); 
								let	Deposit<CoinType>{	coin:	coins	}	=	move_from<Deposit<CoinType>>(backer_addr); 
								coin::deposit(fund_addr,	coins); 
				} 
} ‘Deposit’ resource is destroyed

and coins are added to
crowdfunding balance

public	entry	fun	claimFunds<CoinType>(account:	&signer,	fund_addr:	address)	acquires	Deposit,	CrowdFunding	{	 
				assertCrowdfundingInitialised<CoinType>(fund_addr); 
				assertGoalReached<CoinType>(fund_addr,	true); 
				assertDeadlinePassed<CoinType>(fund_addr,	true); 
				let	addr	=	signer::address_of(account); 
				assert!(addr	==	fund_addr,	EONLY_CROWDFUNDING_OWNER); 
				let	backers	=	&mut	borrow_global_mut<CrowdFunding<CoinType>>(fund_addr).backers; 
				withdrawCoinsFromDeposits<CoinType>(addr,	backers); 
				destroyCrowdfunding<CoinType>(fund_addr); 
}

How does Move address Solidity’s most common vulnerabilities?

32

Crytic, (2018). Not so smart contracts. https://github.com/crytic/not-so-smart-contracts
Secbit, (2018). Awesome buggy erc20 tokens. https://github.com/sec-bit/awesome-buggy-erc20-tokens

https://github.com/crytic/not-so-smart-contracts
https://github.com/sec-bit/awesome-buggy-erc20-tokens

Certik’s “immovables”

• Bad smells in Move code

33

Resurrecting unsafe types (e.g. unsigned int with overflow)

• Example: reintroducing unsafe
integer arithmetic (with underflow/
overflow) when porting code from
Solidity…

34

Misunderstood reference safety

• Example: marking important structs
with copy, drop capabilities thus
bypassing the borrows checker

35

Zoe on Agoric

Agoric: use JavaScript to write secure smart contracts for Web3

37

written in 
Hardened JavaScript

Digital assets 
managed by 

Zoe framework

executing on 
A public blockchain 

(Tendermint / Cosmos)

Object-capability security

38

“(Language-based) Security as extreme Modularity”

- Mark S. Miller
Modularity: avoid needless dependencies (to prevent bugs)

Security: avoid needless authority (to prevent exploits)

“Only connectivity begets connectivity”

Three simple rules that describe how authority can be acquired in a capability-secure system:

39

// alice executes:
let carol = makeCarol()Creation: e.g. alice creates carol herself

// alice executes:
bob.foo(carol)Transfer: e.g. alice transfers carol to bob

// alice’s constructor:
function makeAlice(carol) {…}

Endowment: e.g. at creation, alice is
endowed with authority to access carol

Zoe ERTP: Electronic Rights Transfer Protocol

• In Zoe, digital assets are represented as Objects

• Access to a Payment object => authority to spend the asset

40

const start = zcf => {

 assertIssuerKeywords(zcf, harden(['Donation']));

 const { coinBrand, deadline, goal } = zcf.getTerms();

 const target = AmountMath.make(coinBrand, goal);

 const backerseats = [];

 const claimOfferHandler = seat => { … };

 const donateOfferHandler = seat => { … }; 

 const reclaimOfferHandler = seat => { … };

 const creatorFacet = Far('creatorFacet', {

 makeClaimInvitation: () => zcf.makeInvitation(claimOfferHandler, 'claim'),

 });

 const donorFacet = Far('donorFacet', {

 makeDonateInvitation: () => zcf.makeInvitation(donateOfferHandler, ‘donate'),

 makeReclaimFundsInv: () => zcf.makeInvitation(reclaimOfferHandler, 'reclaim'),

 });

 return harden({ creatorFacet, donorFacet });

};

export { start };

Separate interfaces 
per contract party

Interface to Zoe

Zoe: Offer Safety

42

 const alphaCoin = makeIssuerKit("AlphaCoin");

 const alphaCoinPurseBob = await E(alphaCoin.issuer).makeEmptyPurse();

 …

 // Bob donates 30 AlphaCoins

 const bobDonateInvitation = await E(donorFacet).makeDonateInvitation();

 const bobProposal = harden({

 give: { Donation: AmountMath.make(alphaCoin.brand, 30n) },

 exit: { waived: null },

 });

 //Bob takes 30 AlphaCoins out of his purse, creating a payment

 const bobPayment = alphaCoinPurseBob.withdraw(AmountMath.make(alphaCoin.brand, 30n));

 //Bob offers the invitation, the proposal and the payment to zoe and gets a seat in return

 const bobSeat = await E(zoe).offer(bobDonateInvitation, bobProposal, harden({ Donation: bobPayment }));

 //Bob should get an offer result which states that his donation has been made

 await E(bobSeat).getOfferResult();

 // if the campaign fails then Bob gets a refund

 await E(bobSeat).getPayout('Donation').then(payment => alphaCoinPurseBob.deposit(payment));

Users explicitly specify
what assets a contract can
access. Zoe keeps these
assets in escrow while the

contract executes.

 const claimOfferHandler = seat => {

 let totalAmount = AmountMath.make(coinBrand, 0n);

 donors.forEach(donorSeat => {

 totalAmount = AmountMath.add(totalAmount, 
 donatorSeat.getAmountAllocated('Donation', coinBrand), coinBrand);

 });

 // if crowdfunding succeeded…

 if (deadlinePassed() && AmountMath.isGTE(totalAmount, target)) {

 donors.forEach(donorSeat => {

 seat.incrementBy(donorSeat.decrementBy(harden(donorSeat.getCurrentAllocation())));

 zcf.reallocate(donorSeat, seat);

 donorSeat.exit();

 });

 seat.exit();

 return ‘Donations claimed';

 }

 //if there is still time left, notify that the deadline hasn't expired

 seat.exit();

 return 'The deadline has not yet passed';

 };

 const claimOfferHandler = seat => {

 let totalAmount = AmountMath.make(coinBrand, 0n);

 donors.forEach(donorSeat => {

 totalAmount = AmountMath.add(totalAmount, 
 donatorSeat.getAmountAllocated('Donation', coinBrand), coinBrand);

 });

 // if crowdfunding succeeded…

 if (deadlinePassed() && AmountMath.isGTE(totalAmount, target)) {

 donors.forEach(donorSeat => {

 seat.incrementBy(donorSeat.decrementBy(harden(donorSeat.getCurrentAllocation())));

 zcf.reallocate(donorSeat, seat);

 donorSeat.exit();

 });

 seat.exit();

 return ‘Donations claimed';

 }

 //if there is still time left, notify that the deadline hasn't expired

 seat.exit();

 return 'The deadline has not yet passed';

 };

APIs for safe math with
currency amounts

 const claimOfferHandler = seat => {

 let totalAmount = AmountMath.make(coinBrand, 0n);

 donors.forEach(donorSeat => {

 totalAmount = AmountMath.add(totalAmount, 
 donatorSeat.getAmountAllocated('Donation', coinBrand), coinBrand);

 });

 // if crowdfunding succeeded…

 if (deadlinePassed() && AmountMath.isGTE(totalAmount, target)) {

 donors.forEach(donorSeat => {

 seat.incrementBy(donorSeat.decrementBy(harden(donorSeat.getCurrentAllocation())));

 zcf.reallocate(donorSeat, seat);

 donorSeat.exit();

 });

 seat.exit();

 return ‘Donations claimed';

 }

 //if there is still time left, notify that the deadline hasn't expired

 seat.exit();

 return 'The deadline has not yet passed';

 };

APIs to access and modify
allocation of assets

between parties

Zoe: programming patterns

• Interface objects must be explicitly made immutable (“hardened”)

• Remote objects: must use eventual send API to send async messages

• Objects received from counterparty must first be verified with a trusted issuer

• No static types: manual user input validation

• Must carefully reason about what objects to keep private

46

(source: Agoric)

General-purpose languages on the blockchain

Web3: a growing developer ecosystem

48

(Source: Electric Capital, blockchain developer report, January 2023)

Emerging Appchain SDK frameworks

49

Cosmos SDK: modules and keepers

50

Cosmos SDK: modules and keepers

51

func (k Keeper) AppendStep(ctx sdk.Context, step types.Step) uint64 {
count := k.GetStepCount(ctx)
step.StepId = count

store := prefix.NewStore(ctx.KVStore(k.storeKey), types.KeyPrefix(types.StepKey))
appendedValue := k.cdc.MustMarshal(&step)
store.Set(GetStepIDBytes(step.StepId), appendedValue)
k.SetStepCount(ctx, count+1)
return count

}

func (k Keeper) GetStep(ctx sdk.Context, id uint64) (val types.Step, found bool) {
store := prefix.NewStore(ctx.KVStore(k.storeKey), types.KeyPrefix(types.StepKey))
b := store.Get(GetStepIDBytes(id))
if b == nil {

return val, false
}
k.cdc.MustUnmarshal(b, &val)
return val, true

}

Explicit read/write from/to the
blockchain (key-value store)

Vulnerabilities in Cosmos code

52

(Source: Crytic)

https://github.com/crytic/building-secure-contracts/tree/master/not-so-smart-contracts/cosmos

Vulnerabilities in Cosmos code: non-determinism

53

Smart contract languages: summary

54

Assets 
represented as… Strengths Issues

Solidity Integers: 
mapping (address => uint)

Straightforward imperative code.
Accessible, familiar.

Base language too error-prone. Use
libraries (OpenZeppelin). Reentrancy.

Move Resource types: 
struct Coin has key {…} Reference safety, resource types.

Global storage model requires
different way of structuring code.

“Immovables”.

Zoe
Payment and Purse objects: 
mint.mintPayment(amount)
 Reuse subset of a general-purpose

language (JavaScript).

Must carefully follow coding idioms,
no language support for asset
management. Complex framework.

Cosmos Coin objects managed by a
dedicated Bank module

Reuse general-purpose language
(Go).

Explicit save/restore of blockchain
state. Avoid non-determinism.
Complex framework.

PL Design & Smart Contracts

55

Move Zoe

Solidity Cosmos

Reality check: what actually gets used

56
(Source: Defillama, april 2023)

TVL = Total value locked in smart contract programs

Exploring the design space of smart contract languages

Tom Van Cutsem 

Thanks for listening!

twitter.com/tvcutsemgithub.com/tvcutsemtvcutsem.github.io be.linkedin.com/in/tomvc @tvcutsem@techhub.social

https://github.com/tvcutsem
https://techhub.social/@tvcutsem
https://be.linkedin.com/in/tomvc
https://twitter.com/tvcutsem
https://tvcutsem.github.io

