KU LEUVEN

Designing “least-authority” JavaScript apps

Tom Van Cutsem
DistriNet KU Leuven

tvcutsem.github.io be.linkedin.com/in/tomvc github.com/tvcutsem X X.com/tvcutsem @tvcutsem@techhub.socia

https://be.linkedin.com/in/tomvc
https://techhub.social/@tvcutsem
https://github.com/tvcutsem
http://x.com/tvcutsem
https://tvcutsem.github.io

Web application security

same-origin policy

certificate pinning

OAuth .
cookies

content security policy

CSRF

LSTS Ntml sanitization

DLUHSD

Open Web Application

Security Project

I DistriN=t

A software engineering view of \Web application security

SaFRe-oHgIR-potcy modules
certificatepinning runctions
encapsulation
SALth
cookies dependencies
CORteRt-security-potcy immutability
CSRE datatlow
HSTS atnksanitization 1ISOlation

3 I DistriN=t

A software engineering view of Web application security

"Security Is just the extreme of Modularity”

- Mark S. Miller {
(Chief Scientist, Agoric) s
[S 4

Modularity: avoid needless dependencies (to prevent bugs)

Security: avoid needless vulnerabilities (to prevent exploits)

4 I DistriN=t

The CIA triad from an application security perspective

- Confidentiality (a.k.a. Secrecy): No one can infer information they are
not supposed to know. Confidentiality usually rests on cryptography
to keep information secret.

- Example violation: “Bob learns how much money Alice has in her
bank account”

Example threat: side channel attack.

Confidentialit
- Integrity (a.k.a. Safety): No “bad” things happen. Integrity usually rests Y

on access control determining what agents can cause what effects.

The Information

Security
- Example threat: confused deputy attack. Triad

- Example violation: “Bob steals Alice’'s money”

- Availability (a.k.a. Liveness): “Good” things continue to happen.

- Example violation: “Bob prevents Alice from spending her money
as she wants”

Availability

(Image source: Nikander, Jussi & Manninen, Onni & Laajalahti, Mikko. (2020). Requirements for cybersecurity in

* Exam p | e th reat : a d en ial Of SerVi Ce attaC k . agricultural communication networks. Computers and Electronics in Agriculture.)

(Source: Miller, “A Taxonomy of Security Issues”, 2021, https://agoric.com/blog/technology/a-taxonomy-of-security-issues)

5 I DistriN=t

https://agoric.com/blog/technology/a-taxonomy-of-security-issues

The CIA triad from an application security perspective

- Confidentiality (a.k.a. Secrecy): No one can infer information they are
not supposed to know. Confidentiality usually rests on cryptography
to keep information secret.

- Example violation: “Bob learns how much money Alice has in her
bank account”

Example threat: side channel attack. Our focus
Confidentiality

- Integrity (a.k.a. Safety): No “bad” things happen. Integrity usually rests
on access control determining what agents can cause what effects.

The Information

Security
- Example threat: confused deputy attack. Triad

- Example violation: “Bob steals Alice’'s money”

- Availability (a.k.a. Liveness): “Good” things continue to happen.

- Example violation: “Bob prevents Alice from spending her money
as she wants”

Availability

(Image source: Nikander, Jussi & Manninen, Onni & Laajalahti, Mikko. (2020). Requirements for cybersecurity in

* Exam p | e th reat : a d en ial Of SerVi Ce attaC k . agricultural communication networks. Computers and Electronics in Agriculture.)

(Source: Miller, “A Taxonomy of Security Issues”, 2021, https://agoric.com/blog/technology/a-taxonomy-of-security-issues)

6 I DistriN=t

https://agoric.com/blog/technology/a-taxonomy-of-security-issues

Application integrity & access control

"My Camera App"” Would Like

to Access the Camera

This app uses the camera to take cute
pictures of cats.

Don’t Allow

“Atom” would like to access your calendar.
(ol

?

Don't Allow OK

In-app purchases
Identity

Contacts
Photos/Media/Files
Camera

Wi-Fi connection information

Google play | acosT |

© © @ 2% Let this app access your info? x David
&« C' @ Secure https://account.live.co.. G 7

| .

=

.. Let this app access your info?
cyberduck.io

Cyberduck needs your permission to:

’a Access OneDrive files
Cyberduck will be able to open and edit
OneDrive files, including files shared with
you.

You can change these application permissions at any
time in your account settings.

o

Terms of Use Privacy & Cookies Sign out

Microsoft

(O 3 & Mozilla Foundation (US) | https://addons.mozil

itic)| =
G Add Gesturefy?

It requires your permission to:

* Access your data for all websites
* Read and modify bocokmarks
* Read and modify browser settings
¢ |Input data to the clipboard
¢ Download files and read and modify the browser’s
download history
¢ Display notifications to you
* Access recently closed tabs
‘ ¢ Access browser tabs

! Cancel

Share with others

People

hey deb here's the pitch for the festival

= Deborah Tennen x Add more people...

Get shareable link (&

7 -

v" Can edit

Can comment

Can view

Notify people v/

I DistriN=t

Application integrity (safety): going beyond OS process isolation

Qur focus

C
Module A Module B

Read/write

Process A Process B

Operating system

8 I DistriN=t

This Lecture

-+ Part |: why module isolation is critical to modern JavaScript applications
- Part Il: the Principle of Least Authority, by example (in JavaScript)

- Part lll: safely composing modules using least-authority patterns

9 I DistriN=t

Part |
Why module isolation is critical to modern JavaScript applications

10 BEEE DistriN=t

JavaScript is no longer just about the Web. Used widely across all tiers.

~ Microsoft Edge
WebView2 Runtime

GraalVM.

u CORDOVA"
e

Embedded Mobile Desktop/Native Server Database

11 I DistriN=t

Modern Javascript applications are built from thousands of modules

2500000

2000000

1500000

1000000

500000

CPAN
Maven Central (Java)
B npm (node.js)
Bl nuget (.NET)
Bl Packagist (PHP)
B PyPI
2 Rubygems.org

2012 2014 2016 2018 2020

(source: modulecounts.com, Nov 2022)

12

2,000,000 modules on NPM

“The average modern web application has over
1000 modules [...] 97% of the code in a modern
web application comes from npm. An individual

developer is responsible only for the final 3% that
makes their application unique and useful.”

(source: npom blog, December 2018)

I DistriN=t

http://modulecounts.com

Composing modules: it’s all about trust

It Is exceedingly common to run code you don’t know or trust in a common environment

Browser env Server env

Webpage Web server app

Cookies Requests Files

13 I DistriN=t

What can happen when a module goes rogue”?

It Is exceedingly common to run code you don’t know or trust in a common environment

Browser env Server env

Webpage Web server app

Cookies Requests Files

14 I DistriN=t

What can happen when a module goes rogue”?

Browser env

@ The New York Times & - 4

@nytimes

Webpage Attn: NYTimes.com readers: Do not click pop-up box warning

about a virus -- it's an unauthorized ad we are working to
eliminate.
D MOdU‘e Q17 7:54 PM - Sep 13, 2009 ®

L See The New York Times's other Tweets >

DOM Cookies

e <script src=“http://evil.com/ad.js”>

15 I DistriN=t

What can happen when a module goes rogue”?’

Server env

Web server app

Module

Requests Files

NSO
\@dc

npm install event-stream

16

Check your repos... Crypto-coin-
stealing code sneaks into fairly
popular NPM lib (2m downloads per
week)

Node.js package tried to plunder Bitcoin wallets

By Thomas Claburn in San Francisco 26 Nov 2018 at 20:58 49() SHARE V¥

\{niS) ‘
this.
2/.'(?4#[“\5]"$

. 'carousel’))
7;’2"”?52:;5({}, starget.data()

windex - ‘this.attr('data-slide-toO :
deindex) options.interval = false

, taf‘get, optiOnS)

> ”.r

(source: thereqister.co.uk)

I DistriN=t

http://theregister.co.uk

These are examples of software supply chain attacks

Chain Security | August 18, 2022

B [easons app Sec feams ShUUld Shlﬁ gears and 4o 1. Tl;'Iusting code within the supply chain has become
o problematic
bevond Iegacv VUInerabIII"es Many tools designed to help secure software-development pipelines focus on rating the
projects, programmers, and open-source components and their maintainers. However,

a,_h\ S Ao . recent events—such as the emergence the “protestware” that changed the node.ipc open
John P. Mello Jr., Freelance technology writer. reap mor . L : :
source software for political reasons or the hijacking of the popular ua-parser-js project

by cryptominer—underscore that seemingly secure projects can be compromised, or
otherwise pose security risks to organizations. *

Tomislav Peri¢in, co-founder and chief software architect at ReversinglLabs, noted how in
the case of SolarWinds, the trusted source was pushing infected software. Catching
those kinds of mistakes requires a focus on how code behaves, regardless of where it
came from.

‘As long as we keep ignoring the core of the problem —
which is how do you trust code — we are not handling
software supply chain security.”

—Tomislav Pericin

With software supply chain attacks surging, dev and application security teams should
shift gears from legacy vulnerabilities to open-source repos, DevOps tools, and
software tampering.

(Source: https://develop.secure.software/6-reasons-software-security-teams-need-to-go-beyond-vulnerability-response, august 2022)

17 I DistriN=t

https://develop.secure.software/6-reasons-software-security-teams-need-to-go-beyond-vulnerability-response

Increasing awareness

Great tools, but address the symptoms, not the root cause

NnpM security advisories GitHub security alerts

Security advisories L2 [3)= O > -0 28 commits I 1 branch M 0 packages O 2 releases 22 2 contributors g MIT

Advisory Date of advisory Status

. L We found potential security vulnerabilities in your dependencies. . .
Cross-Site Scripting 4 P ty : y = View security alerts

bootstrap-select May 20th. 2020 Only the owner of this repository can see this message.

Cross-Site Scripting
@toast-ui/editor May 20th, 2020

e Snyk vulnerability DB

snyk Test Features v Vulnerability DB Blog Partners Pricing Docs About LogIn Sign Up

"
I I p I I I au d I-t Vulnerability DB » [@ npm > lodash

@ Prototype Pollution

¢ run RIS E] to resolve 1 vulnersbility Affecting lodash package, ALL versions

O

Prototype Pollution

CVSS SCORE

SEMVER WARNING: Recommended @

Report new vulnerabilities

ATTACK VECTOR ATTACK COMPLEXITY
Do your applications use this vulnerable package? Test your applications

| Network | Low
Overview
PRIVILEGES REQUIRED USER INTERACTION
lodash & is a modern JavaScript utility library delivering modularity, performance, & extras.
Low None
Affected versions of this package are vulnerable to Prototype Pollution. The function zipobjectDeep can be tricked into adding or

modifying properties of the Object prototype. These properties will be present on all objects.

18 B DistriN=t

Avolding Interference Is the name of the game

« Shield important resources/APls from modules that don’t need access

» Apply Principle of Least Authority (POLA) to application design

Browser env Server env

Webpage Web server app

-J Module - Module

DOM Cookies Requests Files

19 I DistriN=t

Part I
The Principle of Least Authority, by example (in Javascript)

20 = DistriN=t

Principle of Least Authority (POLA)

* A module should only be given the authority it needs to do its job, and nothing more

full API restricted
access API access

Host resources

21 I DistriN=t

What is “authority” in a JavaScript app?

 Authority is linked to resources represented as objects (or functions)

» Objects can hold references (“pointers”) to resource objects

» The authority to use a resource is expressed by calling a method/function on a reference

210]0

full API restricted
access API access Log - method call

// bob calls:

log.read()
reference

fdl // alice calls:
fd.read()

Host resources

files, http connections, -)
timers, the DOM, ... 22 B DistriN=t

Delegating authority == sharing references, under the right assumptions

Example: Alice wants to give Bob access to Carol, and only to Carol:

// alice calls:

Bob bob.foo(carol)

Assumptions:

* Pointers (references) are unforgeable
JavaScript is memory-safe

» Pointers (references) can be privately stored
JavaScript supports hiding access to private state through scoping rules

* There is no global mutable state
I Ensure that all exported objects/functions in a module are immutable

 There is no undeniable (“ambient”) authority

! Need to load each module in its own, initially empty, global environment
(source: Miller et al. “Capability myths demolished”, 2003)

23 I DistriN=t

Running example: apply POLA to a basic shared log

We would like Alice to only write to the log, and Bob to only read from the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
constructor() {
this.messages_ = [];
¥
write(msg) { this.messages_.push(msg); }
read() { return this.messages_; }

¥

let log = new Log();
alice(log);
bob(log);

24 = DistriN=t

Running example: apply POLA to a basic shared log

If Bob goes rogue, what could go wrong?

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
constructor() {
this.messages_ = [];
¥
write(msg) { this.messages_.push(msg); }
read() { return this.messages_; }

¥

let log = new Log();
alice(log);
bob(log);

25 I DistriN=t

Bob has way too much authority!

If Bob goes rogue, what could go wrong?

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistﬁﬁc£0p<> { // Bob can delete the entire log
this.messages_ = []; log.read().length = @
¥

// Bob can replace the ‘write’ function

log.write = function(msg) {
console.log(“I’m not logging anything”);

3

// Bob can replace the Array built-ins

Array.prototype.push = function(msg) {
console.log(“I’m not logging anything”);

¥

write(msg) { this.messages_.push(msg); }
read() { return this.messages_; }

¥

let Tog = new Log();
alice(log);
bob(log);

26 I DistriN=t

How to solve “prototype poisoning” attacks®

Load each module in its own environment,
with its own set of “primordial” objects

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistﬁﬁc§0p<> { // Bob can delete the entire log
this.messages_ = []; log.read().length = @
¥

write(msg) { this.messages_.push(msg); } // Bob can replace the ‘write’ function

! . log.write = function(msg) {
, read() { return this.messages_; } console.log(“I’m not logging anything”);

// Bob can replace the Array built-ins

let log = new Log(Q); Array.prototype.push = function(msg) {

alice(log);
bob(log);

console.log(“I’m not logging anything”);
3

27 I DistriN=t

Prerequisite: isolating Javascript modules

» Today: JavaScript offers no standard way to isolate a
module (load it in a separate environment)

o | | Environment
» Lots of host-specific isolation mechanisms, but non-
portable and ill-defined: JS app
» Web Workers: no shared memory, can only
communicate using message-passing

* iframes: mutable primordials, “identity Shared resources
discontinuity”

* hodejs vimn module: same issues

28 = DistriN=t

ShadowRealms (ECMA TC39 Stage 2 proposal)

Intuitions: “iframe without DOM”, “principled version of node’s vm module”

Host environment

ShadowRealm ShadowRealm

-, globalThis

globalThis

Primordials: built-in ObjeCtS Ike Object, Object.prototype, Array, Function, Math, JSON, €1C. .
29 LR DistriN=t

Compartments (ECMA TC39 Stage 1 proposal)

Each Compartment has its own global object but shared (immutable) primordials.

Host environment

ShadowRealm ‘Af‘f‘ay ‘ Math | 1 ShadowRealm

Compartment Compartment

globalThis

Deep-frozen
Objects

Deep-frozen
Primordials

Primordials: built-in ObjeCtS Ike Object, Object.prototype, Array, Function, Math, JSON, E€1C. §
30 B DistriN=t

Hardened JavaScript Is a secure subset of standard Javascript

Full JavaScript

Key Idea: code running in

4 P
Hardened JavaScript harderepl JS can only affect
N " the outside world through
* N0 mutable primordials : . C
* no powerful glolbal objects by default ObJeCtS (Capablht GS) exphcmy
* can create Compartments granted to it from outside.

JSON

(inspired by the diagram at https://github.com/Agoric/Jessie)

_

31 I DistriN=t

https://github.com/Agoric/Jessie

Hardened JavaScript: some history

Google develops a project called “Caja” for safe embedding of
dynamic web content (JavaScript scripts) in web pages ® 2009 (\ Google Caja

Attempts are made to standardize core teatures that enable secure @ o015

sandboxing as “Secure ECMAScript”’ (SES) at ECMA TC39 gcgz
Standardisation process got stalled, but work continued on a modified ® 2015
node.js runtime called “endo”, supporting SES on the server @ endo

A company called Agoric rebrands SES to “Hardened JavaScript”, ® 2020 2" AGORIC
works with Moddable and Metamask on implementation and tooling

HardeneddJs is used by several companies to isolate Javascript (roccanc JUEHIRCIONS
modules for IoT (Moddable), Web3 (Agoric), SaaS (Salesforce), ... @ Today

32

L avaMoat

"stream-http”

» CLI tool that puts each package dependency into its own

"globals"™

hardened JS sandbox environment

» Auto-generates config file indicating authority needed by
each package

"Blob": true

"MSStreamReader"
"ReadableStream"

"VBArray": true

"XDomainRequest"”

"XMLHttpRequest"

true

true

true

true

"fetch"

"location.protocol.search”

true

* Plugs into build tools like Webpack and Browserify

true

"packages”

"buffer": true

npm install -D lavamoat "builtin-status-codes": true
npx lavamoat app.js --autopolicy "inherits": true
"process": true
"readable-stream": true
"to-arraybuffer": true
https://github.com/l.avaMoat/lavamoat JeELT ik
"xtend": true
B¥ METAMASK

33 I DistriN=t

https://github.com/LavaMoat/lavamoat

L avaMoat enables more focused security reviews

—Xposure to package dependencies Exposure to package dependencies
without LavaMoat sandboxing with LavaMoat sandlboxing
® \ .0 . ° ! .
o © o ® o © ® .
. ® ®
* %. .9 = : . K R o %
. A ::" %o % ® o. i .:,':: .o
. ° .:" .00... 0... R O.t Q..' [& .0:..
. . .‘0. %° : ® : o ®‘._ ¢ ® P .
¢ o. Tet .:.:) .o * .::‘:.:
o ®e ¢ © 0. o *

* https://github.com/LavaMoat/lavamoat

34 I DistriN=t

https://github.com/LavaMoat/lavamoat

Bonus: avoiding unwanted post-install scripts

- Package managers like npm allow packages to
run install scripts

* A compromised dependency can exploit this to
run code as part of your project installation script

» Lavamoat’s allow-scripts t00l configures your npm install -D @lavamoat/allow-scripts
, , , , , npx --no-install allow-scripts auto
oroject to disable running install scripts by default

// in package.json

- Edit allowed packages in package. json b lavamoat":

"allowScripts": {
"keccak": true,
"core-js": false

. New install scripts entering your dependency tree)
will no longer run automatically unless approved .

m https://www.npmjs.com/package/@lavamoat/allow-scripts

35 I DistriN=t

https://www.npmjs.com/package/@lavamoat/allow-scripts

Back to our example

With Alice and Bob’s code running in their own
Compartment, we mitigate the poisoning attack

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistgﬁcior() { // Bob can delete the entire log
this.messages_ = []; log.read().length = 0
3

// Bob can replace the ‘write’ function
log.write = function(msg) {
console.log(“I’m not logging anything”);

write(msg) { this.messages_.push(msg); }
read() { return this.messages_; }

; }

: | i T
Let log = new Log(); Array-prototype push=Frcroalmsg)—1
alice(log); ' 1 . : A .
bob(log); 1 . ,

36 I DistriN=t

One down, three to go

POLA: we would like Alice to only write to the log,
and Bob to only read from the log.

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistigcior() . // Bob can delete the entire log
-ru log.read().length = 0
this.messages_ = [];
ks

// Bob can replace the ‘write’ function

write(msg) { this.messages_.push(msg); } log.write = function(msg) {

read() { return this.messages_; }

¥

console.log(“I’m not logging anything”);
3

let 1log = new Log();
alice(log);
bob(log);

37 I DistriN=t

Make the log’s interface tamper-proof

Object.freeze makes property bindings (not
their values) immutable

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistggcﬁor() { // Bob can delete the entire log
) log.read().length = 0
this.messages_ = [];
}

// Bob can replace the ‘write’ function
log.write = function(msg) {
console.log(“I’m not logging anything”);

¥

write(msg) { this.messages_.push(msg); }
read() { return this.messages_; }

¥

let log = Object.freeze(new Log());
alice(log);
bob(log);

38 I DistriN=t

Make the log’s interface tamper-proof. Oops.

Functions are mutable too. Freeze doesn’t
recursively freeze the object’s functions.

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistggcior() g // Bob can delete the entire log
. log.read().length = 0
this.messages_ = [];
1 . .
. . //—Bob—can—replace—the “write’ function
write(msg) { this.messages_.push(msg); } . .
read() { return this.messages_; } g- C ks HSG E. .
} } * ’
2$$C22%0339bject.Freeze(new Log()); // Bob can still modify the write function
bob(10g); log.write.apply = function() { “gotcha” };

39 I DistriN=t

Make the log’s interface tamper-proof

Hardened JavaScript provides a harden
function that “deep-freezes” an object

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistggcior() h // Bob can delete the entire log
-ru log.read().length = 0
this.messages_ = [];
} ¢ :) ;
. . //—Bob—can—replace—the “write’ function
write(msg) { this.messages_.push(msg); } . .
read() { return this.messages_; } g I MG N
} } ’ ’
1$§C22%0=)harden(new Log()); // Bob can still modify the write function
a 975 log.write.apply = function() { “gotcha” };
bob(log);

40 I DistriN=t

Two down, two to go

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistggcior() g // Bob can delete the entire log
-ru log.read().length = 0
this.messages_ = [];
} ¢ .) .
. . //—Bob—can—replace—the “write’ function
write(msg) { this.messages_.push(msg); } el .
read() { return this.messages_; } g- C ks Sz E. N
} : | ’
let 1Tog = harden(new Log());
alice(log); - _ 7 » » 7.
bob(log); ' ' - ’

41 I DistriN=t

Two down, two to go

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistggcior() g // Bob can delete the entire log
-ru log.read().length = 0
this.messages_ = [];
} ¢ .) .
. . //—Bob—can—replace—the “write’ function
write(msg) { this.messages_.push(msg); } el .
read() { return this.messages_; } g- C ks Sz E. N
} : | ’
let 1Tog = harden(new Log());
alice(log); - _ 7 » » 7.
bob(log); ' ' - ’

42 I DistriN=t

Don’t share access to mutaple internals

- Modify read() to return a copy of the mutable state.

» Even better would be to use a more efficient copy-on-write or
“immutable” data structure (see immutable-js.com)

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistggcior() g // Bob can delete the entire log
) log.read().length = 0
this.messages_ = [];
1 . .
. . //—Bob—can—replace—the “write’ function
write(msg) { this.messages_.push(msg); } . .
read() { return [...this.messages_]; } g- C ks HSG E. .
} } ’ ’
let log = harden(new Log()); '/ Bl i1 P e £ .
alice(log); : : ‘ » 1.
bob(log); ' ' - ’

43 I DistriN=t

http://immutable-js.com

Three down, one to go

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log { .
constructor() { i - 9
this.messages_ = []; ' ' -
ks . .
: . A—Bob—ecan—replace—thewrite’ function
write(msg) { this.messages_.push(msg); } el .
read() { return [...this.messages_]; } g- C ks HSG E. N
}) ' ’
let 1Tog = harden(new Log());
alice(log); . - YTy ERS ;E : 5; 5.
bob(log); ' ' B ’

44 I DistriN=t

Three down, one to go

» Recall: we would like Alice to only write to the log, and Bob
to only read from the log.

» Bob receives too much authority. How to limit?

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
constructor() {
this.messages_ = [];
ks . .
: . A—Bob—ecan—replace—thewrite’ function
write(msg) { this.messages_.push(msg); } el .
read() { return [...this.messages_]; } g- C ks HSG E. N
}) ' ’
let 1Tog = harden(new Log()); '/ Bl 17 5 Ey 4] . : .
alice(log); : a : G » .
bob(log); ' ' B ’

45 I DistriN=t

Pass only the authority that Bolb needs.

Just pass the write function to Alice and the read
function to Bob.

import * as alice from "alice.js";

import * as bob from “bob.js"; // in bob.js

// Bob can just write to the log

Clgzzstggcﬁor() g log.write(“I’m polluting the log”)
this.messages_ = []; .
AH—Bob—ecan—deltete—the—entirelog
3 :) Tength =0
write(msg) { this.messages_.push(msg); } ' ' -
read() { return [...this.messages_]; } el .
//—Bob—can—replace—the “write’ function
1 1 . _ Lonlmsg) 1
let 1log = new Log(); ' ’
let read = harden(() => log.read()); 3
let write = harden((msg) => log.write(msg));
alice(write); . - Y y o .
bob(read); ' ' B ’

46 I DistriN=t

Success! We thwarted all of Evil Bob’s attacks.

import * as alice from "alice.js";
import * as bob from “bob.js";

// 1n bob.js
. .
class Log { . “3, . 9”
constructor() { '
this.messages_ = []; .
ks I
: . tog-+read-tength—=0
write(msg) { this.messages_.push(msg); }
read() { return [...this.messages_]; } el .
1 a’ e _ EI Lonlmsg) 1
let 1log = new Log(Q); 1 ' ;

let read = harden(() => log.read());
let write = harden((msg) => log.write(msg));

alice(write); G 5
bob(read); ' ' ’

47 I DistriN=t

s there a better way to write this code?

The burden of correct use Is on the client
of the class. Can we avoid this?

import * as alice from "alice.js";
import * as bob from “bob.js";

// 1n bob.js
. .
class Log { . “3, . g”
constructor() { '
this.messages_ = []; .
ks I
: . tog-+read-tength—=0
write(msg) { this.messages_.push(msg); }
read() { return [...this.messages_]; } el .
1 i’ e _ EI onCmsg) 1
let log = new Log(); 1 ' ;
let read = harden(() => log.read());
let write = harden((msg) => log.write(msg));
alice(write); . Y y o .

bob(read); ' ' ’

48 I DistriN=t

Use the Function as Object pattern

» A record of closures hiding state is a fine representation of an
object of methods hiding instance vars

 Pattern long advocated by Doug Crockford instead of using
classes or prototypes

class Log 1 function makeLog() {
CO”;FFUCtOFCD i . const messages = [];
) this.messages_ = []; function write(msg) { messages.push(msg); }
, , function read() { return [...messages]; }
write(msg) { this.messages_.push(msg); } return harden({read, write}): ’
read() { return [...this.messages_]; } 1 | |
ks

let log = new Log(); let 1o .
) ’ g = makelog();
et read = harden(() => log.read()); alice(log.write);

let write = harden((msg) => log.write(msg)); pob(log.read);
alice(write); ' ’
bob(read);

(See also https://martinfowler.com/bliki/FunctionAsObject.html)

49 I DistriN=t

https://martinfowler.com/bliki/FunctionAsObject.html

Use the Function as Object pattern

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makeLog();
alice(log.write);
bob(log.read);

50 I DistriN=t

What if Alice and Bob need more authority”?

If over time we want to expose more functionality to Alice and
Bob, we need to refactor all of our code.

import * as alice from "alice.js"; import * as alice from "alice.js";
import * as bob from “bob.js"; import * as bob from “bob.js";

function makeLog() { function makeLog() {
const messages = []; const messages = [];

function write(msg) { messages.push(msg); } function write(msg) { messages.push(msg); }

function read() { return [...messages]; } function read() { return [...messages]; }
return harden({read, write}); function size() { return messages.length(); }
I return harden({read, write, size});
¥
let log = makeLogQ); let log = makelLog();
alice(log.write); alice(log.write, log.size);
bob(log.read); bob(log.read, log.size);

51 I DistriN=t

EXpose distinct authorities through facets

Easily deconstruct the API of a single powerful object into
separate interfaces by nesting objects

import * as alice from "alice.js"; import * as alice from "alice.js";
import * as bob from “bob.js"; import * as bob from “bob.js";

function makeLog() { function makeLog() {
const messages = []; const messages = [];

function write(msg) { messages.push(msg); } function write(msg) { messages.push(msg); }

function read() { return [...messages]; } function read() { return [...messages]; }
function size() { return messages.length(); } function size() { return messages.length(); }
return harden({read, write, size}); return harden({
1 reader: {read, size},
writer: {write, size}
let log = makeLog(); ;g
alice(log.write, log.size); }

bob(log.read, log.size);
let log = makeLog();
alice(log.writer);

bob(log.reader); <
52 EE DistriN=t

Demo

https://github.com/tvcutsem/lavamoat-demo

53 I DistriN=t

End of Part Il: recap

» Modern JS apps are composed from many Environment
modules. You can’t trust them all.

JS app

» Traditional security boundaries don’t exist

between modules. Compartments add basic
Isolation.

» |Isolated modules must still interact! Shared resources

« Compose functionality from untrusted modules
INn a least-authority manner

* This can be done via reusable programming
patterns that rely on object-capabillity security

54 = DistriN=t

Part |l
Safely composing modules using least-authority patterns

55 = DistriN=t

Design Patterns (“Gang of Four”, 1994)

Design Patterns |8 N

Elements of Reusable Z * VISI’[OF

Object-Oriented Software <

gghhﬁf;ag:r; E * Factory

alph johnson <

- Observer
. Singleton
. State

56 I DistriN=t

Design Patterns for robust composition (Mark S. Miller, 2006

- Facets

Towards a Unified Approach to Access Control and Concurrency Control

by

[|
Mark Samuel Miller o a r ' I I r] g
A dissertation submitted to Johns Hopkins University in conformity with the . < a r et a k e r
requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

- Membrane
+ Sealer/unsealer pair

Permission is hereby granted to make and distribute verbatim copies of this document

without royalty or fee. Permission is granted to quote excerpts from this documented

provided the original source is properly cited. o

http://www.erights.org/talks/thesis/markm-thesis.pdf

57 I DistriN=t

Recall: the Principle of Least Authority (POLA)

* A module should only be given the authority it needs to do its job, and nothing more

full API restricted
access API access

Host resources

58 I DistriN=t

Further limiting Bob'’s authority

We would like to give Bob only temporary read
access to the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makeLog();

alice(log.write);
bob(log.read);

59 I DistriN=t

Use caretaker to insert access control logic

We would like to give Bob only temporary read
access to the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let l1log = makeLog();

let [rlog, revoke] = makeRevokablelLog(log);
alice(log.write);

bob(rlog.read);

60 I DistriN=t

Use caretaker 1o insert access control logic

We would like to give Bob only temporary read
access to the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makeLog();

let [rlog, revoke] = makeRevokablelLog(log);
alice(log.write);

bob(rlog.read);

// to revoke Bob’s access:
revoke();

61 I DistriN=t

Use caretaker 1o insert access control logic

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makeLog();
let [rlog, revoke] =|makeRevokablelLog(log);
alice(log.write);

bob(rlog.read);

// to revoke Bob’s access:
revoke();

62

function makeRevokablelLog(log) {
function revoke() { log = null; };
let proxy = {
write(msg) { log.write(msg); }
read() { return log.read(); }
b
return harden([proxy, revoke]);

¥

I DistriN=t

A caretaker IS Just a proxy object

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makeLog();
let [rlog, revoke] =|makeRevokablelLog(log);
alice(log.write);

bob(rlog.read);

// to revoke Bob’s access:
revoke();

63

function makeRevokablelLog(log) {
function revoke() { log = null; };
let proxy = {
write(msg) { log.write(msg); }
read() { return log.read(); }
b
return harden([proxy, revoke]);

¥

I DistriN=t

A caretaker IS Just a proxy object

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makeLog();
let [rlog, revoke] =|makeRevokablelLog(log);
alice(log.write);

bob(rlog.read);

// to revoke Bob’s access:
revoke();

64

function makeRevokablelLog(log) {
function revoke() { log = null; };
let proxy = {
write(msg) { log.write(msg); }
read() { return log.read(); }
b
return harden([proxy, revoke]);

¥

I DistriN=t

Taming Is the process of restricting access to powerful APIs

» Expose powerful objects through restrictive proxies to third-party code

 E.g. Alice might give Bob read-only access to a specific subdirectory of her file system

Host resources

65 I DistriN=t

Taming Is the process of restricting access to powerful APIs

Potential hazard: the taming proxy must ensure it does not “leak™ privileged
access to host resources through the tamed API (e.g. through return values)

Host resources

66 I DistriN=t

Taming Is the process of restricting access to powerful APIs

The solution is to transitively apply the proxy pattern to return values as
well. This pattern is called a “membrane”

Deep dive blog post at tvcutsem.github.io/membranes

JS app

Host resources

67 I DistriN=t

http://tvcutsem.github.io/membranes

| east-authority patterns are used In industry

Example: how Google Caja uses taming to restrict access to the browser
DOM

defensive Caja taming of <div> in host page
objects defensive objects /
Nifty Social Site Caja DOM boundary
-1]/within host <div>
" “ ﬂ ﬁ
game code from ‘ ' — guest page
other sources
— host page
=)
malicious game HTTP connection
Caja server
Caja subsystem

Google Caja

(source: Google Caja documentation: https://developers.google.com/caja/docs/about)

68 = DistriN=t

https://developers.google.com/caja/docs/about

| east-authority patterns are used in industry

[odabt B® METAMASK
Moddable XS MetaMask Snaps
Uses Compartments for safe end-user Uses LavaMoat to sandbox plugins
scripting of loT products In their crypto web wallet
Google Caja Mozilla Firefox
Uses taming for safe html Uses membranes to isolate
embedding of third-party content site origins from privileged JS code

69

= [/ AGORIC

Agoric Zoe

Uses Hardened JS for writing
smart contracts and Dapps

salesforce

Salesforce Lightning

Uses realms and membranes to
IsSolate & observe Ul components

I DistriN=t

Summary

70 I DistriN=t

This Lecture: Recap

Part |: why module isolation is
critical to modern JavaScript
applications

Part II: the Principle of Least
Authority, by example

Part lll: safely composing modules
using least-authority patterns

71

Browser env

Webpage

DOM

Cookies

I DistriN=t

1he take-away messages

* Modern applications are composed from many modules.

* You can’t trust them all (software supply chain attacks) Environment

* Apply the “principle of least authority” to limit trust.

JS app

» Step 1: Isolate modules (Hardened JS & Lavamoat)

 Step 2: Let modules interact with “least authority”
(using reusable programming patterns)
Shared resources

* Understanding these patterns is important in a world of
> 2,000,000 NPM modules.

* Even more critical in the emerging “Web3” where code
can access valuable digital assets (think: tokens, NFTs, ...)

72 = DistriN=t

KU LEUVEN

Designing “least-authority” JavaScript apps

Tom Van Cutsem
DistriNet KU Leuven

Questions?
tom.vancutsem@kuleuven.be

tvcutsem.github.io be.linkedin.com/in/tomvc github.com/tvcutsem X X.com/tvcutsem @tvcutsem@techhub.social

http://x.com/tvcutsem
https://tvcutsem.github.io
https://be.linkedin.com/in/tomvc
https://techhub.social/@tvcutsem
https://github.com/tvcutsem
mailto:tom.vancutsem@kuleuven.be

Further Reading

- Mark Miller, Ka-Ping Yee, Jonathan Shapiro, “Capability Myths Demolished”: https://srl.cs.jhu.edu/pubs/SRIL2003-02.pdf

- Compartments: https://qgithub.com/tc39/proposal-compartments and https://github.com/Agoric/ses-shim

- ShadowRealms: https://github.com/tc39/proposal-realms and github.com/Agoric/realms-shim

- Hardened JS (SES): https://qithub.com/tc39/proposal-ses and https://github.com/endojs/endo/tree/master/packages/ses

- Subsetting ECMAScript: https://github.com/Agoric/Jessie

- Kris Kowal (Agoric): “Hardened JavaScript” https://www.youtube.com/watch?v=Rood/SIl_-DE

- Making Javascript Safe and Secure: Talks by Mark S. Miller (Agoric), Peter Hoddie (Moddable), and Dan Finlay (MetaMask): https://www.youtube.com/playlist’?
list=Pl zDw4 T Tug5025J5M3twErKImriOraGik|

- Moddable: XS: Secure, Private JavaScript for Embedded |oT: https://blog.moddable.com/blog/secureprivate/

- Membranes in JavaScript: tvcutsem.github.io/js-membranes and tvcutsem.github.io/membranes

- Caja: https://developers.google.com/caja (Capability-secure subset of JavaScript)

- Chip Morningstar, “What are capabilities”: http://habitatchronicles.com/2017/05/what-are-capabilities/ (broad historical perspective)

- Why KeyKOS is fascinating: https://qithub.com/void4/notes/issues/41 (sketches the early history of capabilities as used in operating systems)

- Neil Madden, “Capability-Based Security and Macaroons” https://freecontent.manning.com/capability-based-security-and-macaroons/#id ftn3 (capabilities in REST APIs)

74 I DistriN=t

https://srl.cs.jhu.edu/pubs/SRL2003-02.pdf
https://github.com/tc39/proposal-compartments
https://github.com/Agoric/ses-shim
https://github.com/tc39/proposal-realms
http://github.com/Agoric/realms-shim
https://github.com/tc39/proposal-ses
https://github.com/endojs/endo/tree/master/packages/ses
https://github.com/Agoric/Jessie
https://www.youtube.com/watch?v=RoodZSIL-DE
https://www.youtube.com/playlist?list=PLzDw4TTug5O25J5M3fwErKImrjOrqGikj
https://www.youtube.com/playlist?list=PLzDw4TTug5O25J5M3fwErKImrjOrqGikj
https://blog.moddable.com/blog/secureprivate/
http://tvcutsem.github.io/js-membranes
http://tvcutsem.github.io/membranes
https://developers.google.com/caja
http://habitatchronicles.com/2017/05/what-are-capabilities/
https://github.com/void4/notes/issues/41
https://freecontent.manning.com/capability-based-security-and-macaroons/#id_ftn3

Acknowledgements

- Mark S. Miller (for the inspiring and ground-breaking work on Object-capabilities, Robust Composition, E, Caja,
JavaScript and Secure ECMAScript)

- Marc Stiegler’s “PictureBook of secure cooperation” (2004) is a great source of inspiration for patterns of robust
composition

» Doug Crockford’s “JdS: the Good Parts” and “How JS Works” books provide a highly opinionated take on how to write
clean, good, robust JavaScript code

- Kate Sills and Kris Kowal at Agoric for helpful comments on earlier versions of these slides
- The Cap-talk and Friam community for inspiration on capability-security and capability-secure design patterns

- TC39 and the es-discuss community, for the interactions during the design of ECMAScript 2015, and in particular all the
feedback on the Proxy API

- The SES secure coding guide: https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-
quide.md

75 B DistriN=t

https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md
https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md
https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md
https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md

