
A gentle introduction to Ethereum and “smart contracts”
Tom Van Cutsem

DistriNet KU Leuven

x.com/tvcutsemgithub.com/tvcutsemtvcutsem.github.io be.linkedin.com/in/tomvc @tvcutsem@techhub.social

http://x.com/tvcutsem
https://be.linkedin.com/in/tomvc
https://github.com/tvcutsem
https://techhub.social/@tvcutsem
https://tvcutsem.github.io


This Session

• Ethereum, a “programmable” blockchain 

• Smart contracts: what is a smart contract? How does it relate to 
blockchains? 

• Solidity: a programming language to write smart contracts 

• Decentralized applications (Dapps): web apps backed by smart contracts 

• Challenges, tools, advice

2



Blockchains

3



Visualizing the blockchain: https://tx.town/v/eth 

4

https://tx.town/v/eth


Physical view: a blockchain is a peer-to-peer network of computers

Many independent validators / miners

Blockchain networkWallet

T

Transaction

User(s) T

Signed 
Transaction



Logical view: a blockchain is a transaction processing machine

T

Wallet

T

Transaction

User(s)

Bitcoin

T0

S0 S1

T1

S2

transfer 2 coins 
to Bob

signed, Alice

IF	Alice’s	signature	is	correct	
AND	she	has	at	least	2	coins	
THEN	transfer	the	coins	to	Bob



Ethereum’s innovation: make the transactions programmable!

T

Wallet

T

Transaction

User(s)

transfer 2 coins 
to Bob’s program

signed, Alice

T0

S0 S1

T1

S2

Bob’s program



Ethereum’s innovation: make the transactions programmable!

T

Wallet

T

Transaction

User(s)

transfer 2 coins 
to Bob’s program

signed, Alice

T0

S0 S1

T1

S2

IF	at	least	${amount}	coins	
			were	deposited	before	${date}	
THEN	transfer	all	stored	coins	to	Bob	
ELSE	refund	all	stored	coins

Example: a basic crowdfunding contract

Bob’s program



Blockchains as trusted virtual computers

9

T0

S0 S1

T1

S2

Bob’s program

consensus

T0

S0 S1

Many (1000s) untrustworthy physical computers

One single virtual computer 
with strong trust guarantees



“Blockchains are computers that can make credible commitments”

10(Source: Chris Dixon, Crypto Networks and Why They Matter, 2020)



Applications? Ethereum’s “Decentralized Finance”

(image credit: theblockcrypto.com )
(source: coingecko.com, retrieved May 2024)

Fungible tokens (ERC-20)

Non-fungibles (NFTs)

SBTs

…

Stablecoins

.eth names

New kinds of electronic rights 
collectively worth over $100 Billion

http://theblockcrypto.com
https://coingecko.com


Smart contracts

12



What is a smart contract?

13

A software program that automatically moves digital assets 
according to arbitrary pre-specified rules

(Vitalik Buterin, Ethereum White Paper, 2014)



What is a smart contract?

14

A software program that can receive, store & send “money” 

Essentially, a program with its own “bank account”



Smart contracts: origins

• The term “smart contract” was first proposed by cryptographer Nick Szabo in 
1995. 

• Goal: digitally automate multi-party business agreements using computer 
protocols and cryptography to reduce counterparty risk (the risk of the other 
party not executing on what they promised after they agreed to the contract) 

• The key idea: 
• Express the terms & conditions of a trade agreement as executable code. 
• Parties agree to the contract by cryptographically transferring control of their 

(digital) assets to the contract thus “locking up” their assets. 
• The contract keeps the assets in escrow. Assets can only be transferred 

out of the contract according to the logic written in the code. 
• The computer that runs the code acts like a judge enforcing a legal contract.  

• A note on terminology: smart contracts are neither “smart” as in “using AI”, nor 
legally binding “contracts”.

15

Cryptographer Nick Szabo, 
Inventor of the term “smart contract”



Smart contracts: basic principle

• A vending machine is an automaton that can trade physical assets

16

1. insert coins

2. dispense drink



Smart contracts: basic principle

• A smart contract is an automaton that can trade digital assets

17

1. insert digital coins (tokens)

2. dispense other digital assets 
or electronic rights

code



But who should we trust to faithfully execute the automaton’s code?

• A smart contract is an automaton that can trade digital assets

18

1. insert digital coins (tokens)

2. dispense other digital assets 
or electronic rights

code



Delegate trust to a decentralised network

• A smart contract is a replicated automaton that can trade digital assets

19

1. insert digital coins (tokens)

2. dispense other digital assets 
or electronic rights

replicated code



Each transaction updates the virtual computer’s replicated state

20

T0

S[0] S[1]

deposit 2 coins into 
Bob’s contract

Bob’s contract

signed, Alice

network of validator nodes



Incoming transactions are sequenced into blocks

21

T0

S[0] S[1]

T1

S[2]

T2

S[3]

T0 T1
T2 Transaction pool

network of validator nodes



A blockchain ensures the network agrees on a single global order

22

T0

Block n
H(n-1)

S[0] S[1]

T0 T1 T2

Block n+1

hash

H(n)

T1

S[2]

T2

S[3]

S[3]

T0 T1
T2

network of validator nodes



The Ethereum network

• In reality, the network is made up of thousands of computers 

• Statistics of the Ethereum “mainnet”:

23

(Source: ethernodes.org, February 2024)

6000+ network peers 
18+ countries 

5+ distinct software 
implementations

Evolution of # of network nodes over time in last 4 years (Nov 2019 - Feb 2024)

http://nodes.org


Smart contracts on Ethereum

24



Contracts are compiled into bytecode for a simple stack machine

25

solidity source code

.sol

Solidity compiler

Ethereum Virtual Machine

EVM bytecode

Bob’s contract

network of validator nodes



Smart contracts on Ethereum: a basic example

26

contract	NameRegistry	{	
				
			mapping	(string	=>	address)	public	registry;	

			constructor()	{}	

			function	claimName(string	name)	public	payable	{	
							require(msg.value	>=	1	ether);	
							if	(registry[name]	==	address(0))	{	
											registry[name]	=	msg.sender;	
							}	
			}	

			function	ownerOf(string	name)	public	view	{	
							return	registry[name];	
			}	
}

(Code example based on Narayanan et al. handbook, section 10.7)

.sol



Smart contracts on Ethereum: a basic example

27

contract	NameRegistry	{	
				
			mapping	(string	=>	address)	public	registry;	

			constructor()	{}	

			function	claimName(string	name)	public	payable	{	
							require(msg.value	>=	1	ether);	
							if	(registry[name]	==	address(0))	{	
											registry[name]	=	msg.sender;	
							}	
			}	

			function	ownerOf(string	name)	public	view	{	
							return	registry[name];	
			}	
}

Define a new contract.



Smart contracts on Ethereum: a basic example

28

contract	NameRegistry	{	
				
			mapping	(string	=>	address)	public	registry;	

			constructor()	{}	

			function	claimName(string	name)	public	payable	{	
							require(msg.value	>=	1	ether);	
							if	(registry[name]	==	address(0))	{	
											registry[name]	=	msg.sender;	
							}	
			}	

			function	ownerOf(string	name)	public	view	{	
							return	registry[name];	
			}	
}

Define the contract state. 

All state is replicated and publicly 
persisted on the blockchain.



Smart contracts on Ethereum: a basic example

29

contract	NameRegistry	{	
				
			mapping	(string	=>	address)	public	registry;	

			constructor()	{}	

			function	claimName(string	name)	public	payable	{	
							require(msg.value	>=	1	ether);	
							if	(registry[name]	==	address(0))	{	
											registry[name]	=	msg.sender;	
							}	
			}	

			function	ownerOf(string	name)	public	view	{	
							return	registry[name];	
			}	
}

Define a constructor. 

The constructor is run once during 
creation of the contract and cannot 
be called afterwards. 

We don’t need to do any initialisation 
in this simple contract. The mapping 
by default maps every string to the 0 
address



Smart contracts on Ethereum: a basic example

30

contract	NameRegistry	{	
				
			mapping	(string	=>	address)	public	registry;	

			constructor()	{}	

			function	claimName(string	name)	public	payable	{	
							require(msg.value	>=	1	ether);	
							if	(registry[name]	==	address(0))	{	
											registry[name]	=	msg.sender;	
							}	
			}	

			function	ownerOf(string	name)	public	view	{	
							return	registry[name];	
			}	
}

Define functions. 

Can be called by external clients or 
other contracts. 

Can update the contract’s state. 

Functions can be “called” by sending a 
transaction to the Ethereum network.



Smart contracts on Ethereum: a basic example

31

contract	NameRegistry	{	
				
			mapping	(string	=>	address)	public	registry;	

			constructor()	{}	

			function	claimName(string	name)	public	payable	{	
							require(msg.value	>=	1	ether);	
							if	(registry[name]	==	address(0))	{	
											registry[name]	=	msg.sender;	
							}	
			}	

			function	ownerOf(string	name)	public	view	{	
							return	registry[name];	
			}	
}

A table that keeps track of the owner 
address of each registered name

“Alice” 0xde0b295669a9fd93d5f…

“Bob’s	program” 0x2212D359CF1c5454Ae9…

“a	message” 0x721E221531b7bC98DB2…

“ethereum.org” 0xC55EdDadEeB47fcDE0B…

addressstring



Smart contracts on Ethereum: a basic example

32

contract	NameRegistry	{	
				
			mapping	(string	=>	address)	public	registry;	

			constructor()	{}	

			function	claimName(string	name)	public	payable	{	
							require(msg.value	>=	1	ether);	
							if	(registry[name]	==	address(0))	{	
											registry[name]	=	msg.sender;	
							}	
			}	

			function	ownerOf(string	name)	public	view	{	
							return	registry[name];	
			}	
}

Functions are “called” by sending a 
transaction. 

Each transaction is cryptographically 
signed by the sender and contains the 
sender’s address (msg.sender) and 
may optionally contain any amount of 
tokens (ether) sent along with it 
(msg.value).



Smart contracts on Ethereum: a basic example

33

contract	NameRegistry	{	
				
			mapping	(string	=>	address)	public	registry;	

			constructor()	{}	

			function	claimName(string	name)	public	payable	{	
							require(msg.value	>=	1	ether);	
							if	(registry[name]	==	address(0))	{	
											registry[name]	=	msg.sender;	
							}	
			}	

			function	ownerOf(string	name)	public	view	{	
							return	registry[name];	
			}	
}

Bob can register the name “Bob” 
by creating a transaction containing 
at least 1 ether and calling the 
claimName() function 

claimName(“bob”)

signed, 0x931D3877…

“Alice” 0xde0b295669a9fd93d5f…

“Bob’s	program” 0x2212D359CF1c5454Ae9…

“a	message” 0x721E221531b7bC98DB2…

“ethereum.org” 0xC55EdDadEeB47fcDE0B…

“bob” 0x931D387731bBbC988B3…

1.0	eth



Smart contracts on Ethereum: a basic example

34

contract	NameRegistry	{	
				
			mapping	(string	=>	address)	public	registry;	

			constructor()	{}	

			function	claimName(string	name)	public	payable	{	
							require(msg.value	>=	1	ether);	
							if	(registry[name]	==	address(0))	{	
											registry[name]	=	msg.sender;	
							}	
			}	

			function	ownerOf(string	name)	public	view	{	
							return	registry[name];	
			}	
}

If the function completes without 
errors, any updates to the state 
variables are stored into the 
contract’s persistent memory and 
later committed on the blockchain 
(if the transaction is eventually 
included in a block).



Smart contracts on Ethereum: a basic example

35

contract	NameRegistry	{	
				
			mapping	(string	=>	address)	public	registry;	

			constructor()	{}	

			function	claimName(string	name)	public	payable	{	
							require(msg.value	>=	1	ether);	
							if	(registry[name]	==	address(0))	{	
											registry[name]	=	msg.sender;	
							}	
			}	

			function	ownerOf(string	name)	public	view	{	
							return	registry[name];	
			}	
}

If a require() condition is not met, 
the transaction reverts and any 
updates to the contract state are 
rolled back (not persisted) 

Here, if Bob does not transfer 
enough ether along with the 
transaction he cannot claim the 
name.



Smart contracts on Ethereum: a basic example

36

contract	NameRegistry	{	
				
			mapping	(string	=>	address)	public	registry;	

			constructor()	{}	

			function	claimName(string	name)	public	payable	{	
							require(msg.value	>=	1	ether);	
							if	(registry[name]	==	address(0))	{	
											registry[name]	=	msg.sender;	
							}	
			}	

			function	ownerOf(string	name)	public	view	{	
							return	registry[name];	
			}	
}

Anyone can lookup ownership of 
names by calling the ownerOf() 
function. 

Since the function is read-only 
(marked as view), it can also be 
called locally by a client without 
creating a transaction and without 
broadcasting it to the network.



Remix demo https://remix.ethereum.org/ 

37

https://remix.ethereum.org/


A more complete example: a crowdfunding contract

38

Owner 
(the beneficiary of the crowdfunding action)

Crowdfunding 
contract

Backers 
(the parties that donate funds)

1. Setup
Step 1: the owner creates the contract, 

stating target amount + funding deadline 
(which cannot be changed afterwards)

Step 2: backers can donate money 
(deposit funds into the contract) 

IF the funding deadline has not yet passed

Step 3a (crowdfunding successful): 
the owner can claim the funds 

(withdraw funds from the contract) 
IF the funding deadline has passed AND 

the minimum target amount has been met

Step 3b (crowdfunding failed): 
backers can reclaim their donations 
(withdraw funds from the contract)  

IF the funding deadline has passed AND 
the minimum target amount has not been met

2. Accepting 
donations

3b. Crowdfund 
failed

3a. Crowdfund 
success

deadline passed AND 
amount reached

deadline passed AND 
amount not reached



Crowdfunding contract: Solidity source code

39

contract	Crowdfunding	{	

				address	public	owner;				//	the	beneficiary	address	
				uint256	public	deadline;	//	campaign	deadline	in	number	of	days	
				uint256	public	goal;					//	funding	goal	in	ether	
				mapping	(address	=>	uint256)	public	backers;	//	the	share	of	each	backer	

				constructor(uint256	numberOfDays,	uint256	_goal)	{	
								owner	=	msg.sender;	
								deadline	=	block.timestamp	+	(numberOfDays	*	1	days);	
								goal	=	_goal;		

				}	
				function	donate()	public	payable	{	
								require(block.timestamp	<	deadline);	//	before	the	fundraising	deadline	
								backers[msg.sender]	+=	msg.value;		

				}		

				function	claimFunds()	public	{	
								require(address(this).balance	>=	goal);	//	funding	goal	met	
								require(block.timestamp	>=	deadline);	//	after	the	withdrawal	period	
								require(msg.sender	==	owner);		
								payable(msg.sender).transfer(address(this).balance);	
				}		
				function	getRefund()	public	{	
								require(address(this).balance	<	goal);	//	campaign	failed:	goal	not	met		
								require(block.timestamp	>=	deadline);	//	in	the	withdrawal	period		
								uint256	donation	=	backers[msg.sender];	
								backers[msg.sender]	=	0;	
								payable(msg.sender).transfer(donation);		
				}	
}	

.sol

(Based on: Ilya Sergey, “The next 700 smart contract 
languages”, Principles of Blockchain Systems 2021)



Crowdfunding contract: Solidity source code

40

contract	Crowdfunding	{	

				address	public	owner;				//	the	beneficiary	address	
				uint256	public	deadline;	//	campaign	deadline	in	number	of	days	
				uint256	public	goal;					//	funding	goal	in	ether	
				mapping	(address	=>	uint256)	public	backers;	//	the	share	of	each	backer	

				constructor(uint256	numberOfDays,	uint256	_goal)	{	
								owner	=	msg.sender;	
								deadline	=	block.timestamp	+	(numberOfDays	*	1	days);	
								goal	=	_goal;		

				}	
				function	donate()	public	payable	{	
								require(block.timestamp	<	deadline);	//	before	the	fundraising	deadline	
								backers[msg.sender]	+=	msg.value;		

				}		

				function	claimFunds()	public	{	
								require(address(this).balance	>=	goal);	//	funding	goal	met	
								require(block.timestamp	>=	deadline);	//	after	the	withdrawal	period	
								require(msg.sender	==	owner);		
								payable(msg.sender).transfer(address(this).balance);	
				}		
				function	getRefund()	public	{	
								require(address(this).balance	<	goal);	//	campaign	failed:	goal	not	met		
								require(block.timestamp	>=	deadline);	//	in	the	withdrawal	period		
								uint256	donation	=	backers[msg.sender];	
								backers[msg.sender]	=	0;	
								payable(msg.sender).transfer(donation);		
				}	
}	

Owner 
(the beneficiary of the crowdfunding action)

Crowdfunding 
contract

Backers 
(the parties that donate funds)

constructor()	
claimFunds()

donate()	
getRefund()



Crowdfunding contract: Solidity source code

41

contract	Crowdfunding	{	

				address	public	owner;				//	the	beneficiary	address	
				uint256	public	deadline;	//	campaign	deadline	in	number	of	days	
				uint256	public	goal;					//	funding	goal	in	ether	
				mapping	(address	=>	uint256)	public	backers;	//	the	share	of	each	backer	

				constructor(uint256	numberOfDays,	uint256	_goal)	{	
								owner	=	msg.sender;	
								deadline	=	block.timestamp	+	(numberOfDays	*	1	days);	
								goal	=	_goal;		

				}	
				function	donate()	public	payable	{	
								require(block.timestamp	<	deadline);	//	before	the	fundraising	deadline	
								backers[msg.sender]	+=	msg.value;		

				}		

				function	claimFunds()	public	{	
								require(address(this).balance	>=	goal);	//	funding	goal	met	
								require(block.timestamp	>=	deadline);	//	after	the	withdrawal	period	
								require(msg.sender	==	owner);		
								payable(msg.sender).transfer(address(this).balance);	
				}		
				function	getRefund()	public	{	
								require(address(this).balance	<	goal);	//	campaign	failed:	goal	not	met		
								require(block.timestamp	>=	deadline);	//	in	the	withdrawal	period		
								uint256	donation	=	backers[msg.sender];	
								backers[msg.sender]	=	0;	
								payable(msg.sender).transfer(donation);		
				}	
}	

Instructions to deposit and 
withdraw money (ether)



Privacy on the blockchain
• You can’t store data privately on a public blockchain. 

• All Ethereum transaction inputs and stored contract state are 
public! 

• How to cope? 

• Store only encrypted data (and don’t put the decryption 
key on-chain) 

• Only store commitments to data (cryptographic hashes) on 
the blockchain, and store the data “off-chain”. Anyone with 
access to the data can then verify that this data was 
committed to “on-chain”. 

• Advanced: use “zero-knowledge proofs” (e.g. SNARKs) to 
prove control over data with certain properties, without 
revealing the data itself to the contract.

42

This does not work!
contract Vault { 
  bool public locked; 
  bytes32 private password; 

  constructor(bytes32 _password) { 
    locked = true; 
    password = _password; 
  } 
  function unlock(bytes32 _password) public { 
    if (password == _password) { 
      locked = false; 
    } 
  } 
}

// get the data stored in ‘password’: 
await web3.eth.getStorageAt(contractAddress, 1)

In any Ethereum client:

(Example from coinmonks, medium.com)

http://medium.com


Decentralized Applications (Dapps)

43



Decentralized applications: what and why?

• Decentralized applications (dapps) are web applications backed by smart 
contracts 

• To achieve transparency (publish the core application logic on a 
blockchain, immutable and verifiable by anyone) 

• To resist censorship (avoid a single point of control) 

• To improve reliability (avoid a single point of failure)

44



Decentralized applications: examples

45

Decentralized prediction 
markets & betting platforms

Decentralized autonomous 
organizations (DAOs)

Decentralized 
crowd-funding“Play-to-earn” games

Decentralized exchanges 
Atomic token swaps

Decentralized lending 
and borrowing protocol



Traditional Web application architecture

• Following a standard “3-tier” architecture: 

• Front-end: code that runs in the browser (or on a 
mobile app), mostly UI logic 

• Back-end: code that runs on a web server, focus 
on business logic 

• Database: persists the application state 

• It is common for the application to define the user’s 
identity and to store username and password in the 
database. The user does not control their identity.

46

(Source: P. Kasireddy, “The Architecture of a Web 3.0 application”, Medium.com: 
https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application ) 

https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application


Decentralized Web application architecture

47

• Front-end: largely unchanged (mostly UI logic) 

• Back-end: (part of) the application logic is implemented as a 
smart contract and published on the blockchain 

• Database? The state of the smart contract is persisted on 
the blockchain (replicated across all validator nodes) 

• Node-as-a-Service Provider: offers a REST API to relay 
requests from browsers or mobile apps to peers in the 
blockchain network. 

• Signer: for any user action that results in an update to the 
smart contract, a signature is needed from the user. This 
task typically delegated to a wallet that securely stores the 
user’s keys. The user retains control over their keys (they 
are not stored or controlled by the application).

(Source: P. Kasireddy, “The Architecture of a Web 3.0 application”, Medium.com: 
https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application ) 

https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application


Common Dapp “dev stack” options

48

• Front-end libraries  

• Frameworks 

• NaaS Providers 

• Signers

web3.js

(Source: P. Kasireddy, “The Architecture of a Web 3.0 application”, Medium.com: 
https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application ) 

https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application


Challenges, trends & advice

49



Ethereum has challenges

• Can be expensive to use (> $10 in 
transaction fees is not uncommon) 

• Slow (~10-14 transactions per second) 

• Bugs in contracts can be fatal

1 https://ethereum.org/en/developers/docs/scaling



“Layer 2” scaling solutions (a.k.a. “rollups”)

• Key idea: batch many “Layer 2” (L2) 
transactions into a single combined 
transaction stored on “Layer 1” (L1) 

• Offer a way for anyone to verify that the 
batch of L2 transactions was correctly 
executed 

• “fraud proofs” => optimistic rollups 

• “zero-knowledge proofs” => zk-rollups
(Source: Chainlink)



“Layer 2” scaling solutions: landscape



“Layer 2” scaling solutions: benefits

• Lower transaction fees (< $0.01 / tx) 

• Higher transaction throughput 
(100-1000 tps at ~13min finality)

(Source: L2Beat)

(Source: l2fees.info)

http://l2fees.info


Writing correct smart contracts is a risky business

54

Parity freeze bug (2017)The DAO Hack (2016)

~$280 million accidentally frozen~$50 million stolen

cause: forgot to initialize field in 
constructor

cause: forgot to recheck contract state after 
call to external contract (a “re-entrancy” bug)



Writing correct smart contracts is a risky business

55

(Source: Chainalysis, Crypto Crime Report 2024)



Smart contract development is not like standard web development

56

“Smart contracts can end up controlling tens of millions of 
dollars, making them a target for attackers. The usual software 
development cycle of a continuous write-release-fix loop 
falls short when it comes to the blockchain. Smart contracts 
need to be constructed 100% right in one shot, able to 
withstand years of security attacks with code you can’t really 
modify. They have to be extensively planned, considering all 
logical permutations, accommodating all possible exceptions, 
and meticulously implemented.”

“A short history of smart contract hacks on Ethereum”, 
New Alchemy blog, Feb 2018

https://medium.com/new-alchemy/a-short-history-of-smart-contract-hacks-on-ethereum-1a30020b5fd


How to cope?

• Keep on-chain code to an absolute minimum 

• Use battle-tested libraries (e.g. OpenZeppelin) 

• Use code patterns to enable controlled upgrades (e.g. UUPS proxy pattern) 

• Use static analysis tools to detect potential vulnerabilities (e.g. Mythril, Slither) 

• Conduct code audits (well-known companies include Certik, Trail of Bits, 
Consensys, Dedaub) 

• Use dedicated bug bounty platforms (e.g. Immunefi, HackenProof)

57



Excellent resources on securing smart contracts

• Consensys: Ethereum Smart Contract Best Practices 
https://consensys.github.io/smart-contract-best-practices/  

• Trail of Bits: Building Secure Contracts 
https://secure-contracts.com/  

• Dominik Muhs: Smart Contract Security Field Guide 
https://scsfg.io/ 

58

https://consensys.github.io/smart-contract-best-practices/
https://secure-contracts.com/
https://scsfg.io/


Summary

59



Summary

• Ethereum, a “programmable” blockchain 

• Smart contracts: programs with a bank account 

• Solidity: the most widely used smart contract programming language 

• Decentralized applications (Dapps): web apps backed by smart contracts 

• Challenges, trends & advice

60



Where to find more information

• Ethereum official project website: https://ethereum.org/ 

• Ethereum whitepaper: https://ethereum.org/en/whitepaper/  

• Etherscan block explorer: https://etherscan.io/  

• Remix, an online IDE and playground for Solidity: https://remix.ethereum.org/  

• Solidity by Example: https://solidity-by-example.org/  

• OpenZeppelin reusable contracts: https://www.openzeppelin.com/contracts  

• Awesome-Ethereum: https://github.com/ttumiel/Awesome-Ethereum 

61

https://ethereum.org/
https://ethereum.org/en/whitepaper/
https://etherscan.io/
https://remix.ethereum.org/
https://solidity-by-example.org/
https://www.openzeppelin.com/contracts
https://github.com/ttumiel/Awesome-Ethereum


What will you build on Ethereum?

“as of 2024, the Ethereum 
ecosystem hosts over 4,000 
dapps, 53+ million smart contracts, 
and 96+ million accounts with an 
Ether (ETH) balance” 
- Moralis, The Ethereum Ecosystem in 2024

62

(Image credit: The Defiant)

https://moralis.io/full-guide-the-ethereum-ecosystem-in-2024/


A gentle introduction to Ethereum and “smart contracts”
Tom Van Cutsem

DistriNet KU Leuven

x.com/tvcutsemgithub.com/tvcutsemtvcutsem.github.io be.linkedin.com/in/tomvc @tvcutsem@techhub.social

Questions? 
tom.vancutsem@kuleuven.be 

https://be.linkedin.com/in/tomvc
https://techhub.social/@tvcutsem
https://github.com/tvcutsem
https://tvcutsem.github.io
http://x.com/tvcutsem
mailto:tom.vancutsem@kuleuven.be

