

TECHORAMA

- Architecting Robust
A pﬁraCtitio.ne'r 's ?guide to Secure ECMAScript
- Tom Van Cutsem

NN XS S ,@tvcutsem

About me

+ Computer scientist with one foot in academia and one foot in industry
- Past TC39 member and active contributor to ECMAScript standards

» Author of Proxy and Reflect APIs

+ Author of Traits.|s

+ Passionate about programming languages and Javascript in particular

&= tveutsem.github.io y @tvcutsem) tveutsem

http://tvcutsem.github.io

A software architecture view of security

SaFRe-oHgiR-potcy modules
frame-sandbox functions
PHAGIPAIS information hiding
SAUth dependencies
cookies

content-seeurtypoliey immutabpility

CORS dataflow
At-Santtization encapsulation

A software architecture view of security

"Security Is just the extreme of Modularity”

- Mark S. Miller (
(Chief Scientist, Agoric) >
[AR 4

Modularity: avoid needless dependencies (to prevent bugs)

Security: avoid needless vulnerabilities (to prevent exploits)

This Talk

Part |: why it's becoming important to write more robust applications

Part [l: patterns that let you write more robust applications

TECHORAMA

Part |

The need for more robust JavaScript apps

t’s no longer just about the Web. JavaScript is used widely across tiers

N d og) mongo

N

D Graal

CouchDB

ﬂ CORDOVA"
=

Embedded Mobile Desktop/Native Server Database

< D

Javascript applications are now built from thousands of modules

1750000
CPAN
Maven Central (Java)
1500000 | 'pm npm (node.|s)
Bl nuget ((NET)
1250000 | H@ Packagist (PHP)
B PyPl
M Rubygems.org
1000000 1,000,000 modules on NPM
750000
200000
250000
0 e

2012 2014 2016 2018 2020

(source: modulecounts.com, April 2021)

http://modulecounts.com

JavaScript applications are now built from thousands of modules

1750000

1500000

1250000

1000000

750000

500000

250000

CPAN
Maven Central (Java)
B npm (node.js)
B nuget ((NET)
Bl Packagist (PHP)
B PyPI
Rubygems.org

2012 2014 2016 2018

(source: modulecounts.com, April 2021)

2020

1,000,000 modules on NPM

“The average modern web application has over
1000 modules [...] 97% of the code in a modern
web application comes from npm. An individual

developer is responsible only for the final 3% that
makes their application unique and useful.”

(source: npom blog, December 2018)

http://modulecounts.com

it’s all about trust

» |t is exceedingly common to run code you don’t know/trust in a common
environment

Browser env (e.g. Firefox) Server env (e.g. node)

Webpage Web server app

Cookies Requests Files

it’s all about trust

» |t is exceedingly common to run code you don’t know/trust in a common
environment

Browser env (e.q. Firefox) Server env (e.g. node)

Webpage Web server app

=

DOM Cookies

(=

Requests Files

<script src=*“http://evil.com/ad.js”> npm install evil-logger

it’s all about trust

» |t is exceedingly common to run code you don’t know/trust in a common
environment

Browser env (e.g. Firefox)

@ The New York Times & - 4

@nytimes

Webpage Attn: NYTimes.com readers: Do not click pop-up box warning

about a virus -- it's an unauthorized ad we are working to
eliminate.
D MOdU‘e Q17 7:54 PM - Sep 13, 2009 ®

L See The New York Times's other Tweets >

DOM Cookies

<script src=“http://evil.com/ad.js”’>

it’s all about trust

» |t is exceedingly common to run code you don’t know/trust in a common
environment

Check your repos... Crypto-coin-
stealing code sneaks into fairly
popular NPM lib (2m downloads per

Server env (e.g. node) week)

Node.js package tried to plunder Bitcoin wallets

By Thomas Claburn in San Francisco 26 Nov 2018 at 20:58 49() SHARE V¥

Web server app

4 '5) ' a'
\L:rlwis.attf‘(dat 0 ¢
\

.‘(?=#[A\5]+$)/)

/] \)I | |
rget Miaass('car‘ousél)) '

ons .extend({}, $targ8t.data() J
windex - ‘this.attr('data-slide-toO :
deindex) options.interval = false

] -

Requests Files

, taf‘get, optiOnS)

> ”.r

npm install evil-logger

(source: thereqister.co.uk)

http://theregister.co.uk

Vulnerapillities In dependencies: Increasing awareness

» Great tools - but these address the symptoms, not the root cause

NnpM security advisories GitHub security alerts

Security advisories 123 70 ' - 28 commits ¥ 1 branch " 0 packages v 2 releases A2 2 contributors g MIT

Advisory Date of advisory Status

. . We found potential security vulnerabilities in your dependencies. . .
Cross-Site Scripting 4 P ty y e View security alerts

bootstrap-select May 20th, 2020 Only the owner of this repository can see this message

Cross-Site Scripting
@toast-ui/editor May 20th, 2020

Snyk vulnerability DB

snYk Test Features v Vulnerability DB Blog Partners Pricing Docs About LogIn Sign Up

"
I I p I I I au d I-t Vulnerability DB > [@ npm > lodash

@ Prototype Pollution

PN e instoll chokidar® Ive 1 vulnersbilit Affecting lodash package, ALL versions

SEMVER WARNING: Recommended : 18 4 p tislly bresking change ‘ ; ; m
O

Report new vulnerabilities

CVSS SCORE

ATTACK VECTOR ATTACK COMPLEXITY
Do your applications use this vulnerable package? Test your applications

| Network | Low
Overview
PRIVILEGES REQUIRED USER INTERACTION
lodash & is a modern JavaScript utility library delivering modularity, performance, & extras.
Low None
Affected versions of this package are vulnerable to Prototype Pollution. The function zipobjectDeep can be tricked into adding or

modifying properties of the Object prototype. These properties will be present on all objects.

Avolding interference Is the name of the game

» Shield important resources/APIs from modules that don’t need access

» Apply Principle of Least Authority (POLA) to application design

Browser env (e.q. Firefox) Server env (e.g. node)

Webpage Web server app

- | Y (-

Cookies Requests Files

Prerequisite: isolating JavaScript modules

 Today: JavaScript offers no standardized
Isolation mechanisms

Environment

» Lots of environment-specific isolation
mechanisms, but non-portable and ill-defined: JS app

* Web Workers: forced async communication,

no shared memory

I ' ' 1% ; N
- iframes: mutable primordials, “identity Shared resources

discontinuity”

 hode vm module: same issues

Realms (TC39 Stage 3 proposal)

* Intuitions: “iframe without DOM”, “principled version of node’s vm module”

Host environment

Realm

-, globalThis

globalThis

Primordials: built-in ObjeCtS ke Object, Object.prototype, Array, Function, Math, JSON, €1C.

Compartments (TC39 Stage 1 proposal)

« Compartments: separate globals but shared (immutable) primordials.

Host environment

Rea‘m ‘Ar‘r‘ay ‘ Math

Compartment Compartment

globalThis

Deep-frozen
Objects

Deep-frozen
Primordials

Primordials: built-in objects like object, object.prototype, Array, Function, Math, JSoN, €tC.

Realms and Compartments: draft AP

Realms Compartments
let r = new Realm(); let ¢ = new Compartment({x: 1})
let res = r.evaluate(x = 1; x + 1°); let res = c.evaluate(x + 1) // => 2

// here, x 1s still undefined

// fails, no non-standard globals // fails, no non-standard globals
r.evaluate(process.exit(0)); c.evaluate(process.exit(0));
// does not affect outer Realm’s Array // fails, primordials are immutable
r.evaluate(c.evaluate(

"Array.prototype.push = undefined’); "Array.prototype.push = undefined);
let arr = r.evaluate([]); let arr = c.evaluate([])
// TypeError: no x-realm object access arr instanceof Array; // => true

allowed, only callable objects

Secure ECMAScript (SES)

Full ECMAScript (“WAT” JavaScript) * A subset of Javascript,
building on Compartments

(TC39 Stage 1 proposal)

-

Secure Ecmascript (“tamed” JavaScript)

SES = ES-strict - mutable primordials Key idea: nNo pOWGI’fU‘ Ob. eCts

- ambient authority (powerful globals) by default. SES code car Ol’ﬂy
+ Compartments affect the outside world only
through objects (capabilities)
JSON ("data” Javascript) explicitly granted to it (POLA)

import ‘ses’;
lockdown();

(inspired by the diagram at https://github.com/Agoric/Jessie)

https://github.com/Agoric/Jessie

L avaMoat

» Build tool that puts each of your app’s package

dependencies into its own SES sandbox Plobt e

» Auto-generates config file indicating authority

'XDomainRequest": true
needed by each package LECpReguest! true
"location.protocol.search": true
* Plugs into Webpack and Browserify
:iziiii;—stztjs—codes" true
"inherits": true
"process": true

"readable-stream": true

"to-arraybuffer": true

https://github.com/l.avaMoat/lavamoat "url": true

"xtend": true

https://github.com/LavaMoat/lavamoat

L avaMoat enables more focused security reviews

EXposure to package dependencies Exposure to package dependencies

without L avaMoat sandboxing with LavaMoat sandboxing
. ; 2 ,. ° . : 2 ’. °
® o: 0" % 3::....0. » o .. :.: .:.:: .o
¢ ’ .' .:.. o...t‘ © ° .'t ..0. .:':
°. ® .« ° ® o ‘: U o°

https://qithub.com/L avaMoat/lavamoat

https://github.com/LavaMoat/lavamoat

End of Part |: recap

» Modern JS apps are composed from many
modules. You can’t trust them all.

Environment

» Traditional security boundaries don’t exist
between modules. SES adds basic isolation. JS app

 |solated modules must still interact!

* Design patterns exist to compose modules In
ways that minimize unwanted interactions.

Shared resources

» Going forward: assume all code running in SES

TECHORAMA

Part Il

Robust Application Design Patterns

Design Patterns ("Gang of Four”, 1994)

Design Patterns

S VTS
Elements of Reusable £ VISItOr
Object-Oriented Software g
A o
Erich Gamma > FaCtOry
Riﬁh?rd lP;Ielm 3
Ralph Johnson 9
Jnhiw Vlissides 2 * Observer
z
- Singleton

- State

P
4.
x
—
.

Design Patterns for robust composition (Mark S. Miller, 2006

| |
Robust Composition: o ‘ E l l ' III lg

Towards a Unified Approach to Access Control and Concurrency Control

by

®
Mark Samuel Miller
|
o
A dissertation submitted to Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

+ Caretaker
- Membrane

Copyright (€} 2006. Mark Samuel Miller. All rights reserved.

Permission is hereby granted to make and distribute verbatim copies of this document
without royalty or fee. Permission is granted to quote excerpts from this documented

provided the original source is properly cited.

http://www.erights.org/talks/thesis/markm-thesis.pdf

Running example: apply POLA to a basic shared |log

- We would like Alice to only write to the log, and Bob to only read from the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
constructor() {
this.messages_ = [];
¥
write(msg) { this.messages_.push(msg); }
read() { return this.messages_; }

¥

let log = new Log();
alice(log);
bob(log);

Running example: apply POLA to a basic shared |log

» If Bob goes rogue, what could go wrong?

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
constructor() {
this.messages_ = [];
ks
write(msg) { this.messages_.push(msg); }
read() { return this.messages_; }

¥

let Tog = new Log();
alice(log);
bob(log);

Bob has way too much authority!

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clzzistﬁgcior() { // Bob can delete the entire log
this.messages_ = []; log.read().length = @
¥

// Bob can replace the ‘write’ function

log.write = function(msg) {
console.log(“I’m not logging anything”);

3

// Bob can replace the Array built-ins

Array.prototype.push = function(msg) {
console.log(“I’m not logging anything”);

¥

write(msg) { this.messages_.push(msg); }
read() { return this.messages_; }

¥

let Tog = new Log();
alice(log);
bob(log);

Bob has way too much authority!

» SES mitigates the last attack. Immutable
primordials.

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistggcior() ¢ // Bob can delete the entire log
) log.read().length = 0
this.messages_ = [];
}

// Bob can replace the ‘write’ function
log.write = function(msg) {
console.log(“I’m not logging anything”);

write(msg) { this.messages_.push(msg); }
read() { return this.messages_; }

; }

: | i T
Let log = new Log(); Array.prototype push=rorctcnfmsgy—4
alice(log); ' 1 . : A .
bob(log); ° 5

One down, three to go

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
constructor() {
this.messages_ = [];
ks
write(msg) { this.messages_.push(msg); }
read() { return this.messages_; }

¥

let Tog = new Log();
alice(log);
bob(log);

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

// Bob can delete the entire log
log.read().length = 0

// Bob can replace the ‘write’ function
log.write = function(msg) {
console.log(“I’m not logging anything”);

¥

Make the log’s interface tamper-proof

* Object.freeze (ES5) makes property
bindings (not their values) immutable

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
constructor() {
this.messages_ = [];
ks
write(msg) { this.messages_.push(msg); }
read() { return this.messages_; }

¥

let log = Object.freeze(new Log());
alice(log);
bob(log);

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

// Bob can delete the entire log
log.read().length = 0

// Bob can replace the ‘write’ function
log.write = function(msg) {
console.log(“I’m not logging anything”);

¥

Make the log’s interface tamper-proof. Oops.

* Functions are mutable too. Freeze doesn’t
recursively freeze the object’s functions.

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistggcior() g // Bob can delete the entire log
-ru log.read().length = 0
this.messages_ = [];
} ¢ .) .
. . //—Bob—can—replace—the “write’ function
write(msg) { this.messages_.push(msg); } el .
read() { return this.messages_; } g- C ks HSG E. N
} : | ’
le# Log = Object.freeze(new Log()); // Bob can still modify the write function
alice(log);

bob(log); log.write.apply = function() { “gotcha” };

Make the log’s interface tamper-proof

« SES provides a ‘harden’ function that
“deep-freezes” an object

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistggcior() g // Bob can delete the entire log
) log.read().length = 0
this.messages_ = [];
1 . .
. . //—Bob—can—replace—the “write’ function
write(msg) { this.messages_.push(msg); } el .
read() { return this.messages_; } g- C ks HSG E. N
} } * ’
le# Log = harden(new Log()); // Bob can still modify the write function
alice(log);

bob(log); log.write.apply = function() { “gotcha” };

Two down, two to go

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistggcior() g // Bob can delete the entire log
-ru log.read().length = 0
this.messages_ = [];
} ¢ .) .
. . //—Bob—can—replace—the “write’ function
write(msg) { this.messages_.push(msg); } el .
read() { return this.messages_; } g- C ks Sz E. N
} : | ’
let 1Tog = harden(new Log());
alice(log); : Y » ’

bob(log); ' ' - ;

Don’t share access to mutable internals

- Modify read() to return a copy of the mutable state.

» Even better would be to use a more efficient copy-on-
write or “persistent” data structure (see immutable.|s)

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

Clgzistggcior() g // Bob can delete the entire log
) log.read().length = 0
this.messages_ = [];
1 . .
. . //—Bob—can—replace—the “write’ function
write(msg) { this.messages_.push(msg); } el .
read() { return [...this.messages_]; } g- C ks HSG E. .
} : | ’
let 1Tog = harden(new Log());
alice(log); : Y » ’

bob(log); ' ' ;

Three down, one to go

» Bob receives too much authority. How to limit?

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log { .
constructor() { - 9
this.messages_ = []; ' ' -
} ¢ .) .
write(msg) { this.messages_.push(msg); } el prace—the—write—runction
read() { return [...this.messages_]; } g- C ks HSG E. N
}) ' ’

let log = harden(new Log());
alice(log); G 5
bob(log); . |) |

Pass only the authority that Bob needs.

» Just pass the write function to Alice and the
read function to Bob. Can you spot the bug?

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log { .
constructor() { - 9
this.messages_ = []; ' ' -
} ¢ .) .
write(msg) { this.messages_.push(msg); } el prace—the—write—runction
read() { return [...this.messages_]; } g- C ks HSG E. N
}) ' ’

let 1Tog = harden(new Log());
alice(log.write); ‘ 5
bob(log.read); ' ' ’

Pass only the authority that Bob needs.

 To avoid, only ever pass bound functions

// 1n bob.js
// Bob can just write to the log
log.write(“I’m polluting the log”)

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log { .
constructor() { - 9
this.messages_ = []; ' ' -
} ¢ .) .
write(msg) { this.messages_.push(msg); } el prace—the—write—runction
read() { return [...this.messages_]; } g- C ks HSG E. N
}) ' ’

let log = harden(new Log());

alice(log.write.bind(log)); - :
bob(log.read.bind(log)); ' ' = ,

Success! We thwarted all of Evil Bob’s attacks.

import * as alice from "alice.js"; // 1n bOb'J§ :
import * as bob from “bob.js"; . “3, . 9”
class Log { .
constructor() { - 9
this.messages_ = []; ' ' -
} ¢ .) .
. . //—Bob—can—replace—the “write’ function
write(msg) { this.messages_.push(msg); } el .
read() { return [...this.messages_]; } g- C ks HSG E. N
} N ' ’

let l1log = harden(new Log());

alice(log.write.bind(log)); - ”
bob(log.read.bind(log)); ' ' ,

s there a better way to write this code?

 The burden of correct use Is on the client of
the class. Can we avoid this?

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
constructor() {
this.messages_ = [];
ks
write(msg) { this.messages_.push(msg); }
read() { return [...this.messages_]; }

¥

let log = harden(new Log());
alice(log.write.bind(log));
bob(log.read.bind(log));

Use the Function as Object pattern

» A record of closures hiding state is a fine representation of an
object of methods hiding instance vars

» Pattern long advocated by Doug Crockford in lieu of using
classes or prototypes

import * as alice from "alice.js";
import * as bob from “bob.js"; import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
constructor() { function makeLog() {
this.messages_ = [1; const messages = [];
1 function write(msg) { messages.push(msg); }
write(msg) { this.messages_.push(msg); } function read() { return [...messages]; }
read() { return [...this.messages_]; } return harden({read, write});
ks ks
let log = harden(new Log()); let log = makeLog();
alice(log.write.bind(log)); alice(log.write);
bob(log.read.bind(log)); bob(log.read);

(See also https://martinfowler.com/bliki/FunctionAsObject.html)

https://martinfowler.com/bliki/FunctionAsObject.html

Use the Function as Object pattern

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

let 1og = makeLog();
alice(log.write);
bob(log.read);

What if Alice and Bob need more authority”

» If over time we want to expose more functionality to
Alice and Bob, we need to refactor all of our code.

import * as alice from "alice.js"; import * as alice from "alice.js";
import * as bob from “bob.js"; import * as bob from “bob.js";

function makeLog() { function makeLog() {
const messages = []; const messages = [];

function write(msg) { messages.push(msg); } function write(msg) { messages.push(msg); }

function read() { return [...messages]; } function read() { return [...messages]; }
return harden({read, write}); function size() { return messages.length(); }
1 return harden({read, write, size});
¥
let log = makeLog(); let log = makeLog();
alice(log.write); alice(log.write, log.size);

bob(log.read); bob(log.read, log.size);

EXpose distinct authorities through facets

» Easily deconstruct the API of a single powerful
object into separate interfaces by nesting objects

import * as alice from "alice.js"; import * as alice from "alice.js";
import * as bob from “bob.js"; import * as bob from “bob.js";

function makeLog() { function makeLog() {
const messages = []; const messages = [];

function write(msg) { messages.push(msg); } function write(msg) { messages.push(msg); }

function read() { return [...messages]; } function read() { return [...messages]; }
function size() { return messages.length(); } function size() { return messages.length(); }
return harden({read, write, size}); return harden({
1 reader: {read, size},
writer: {write, size}
let log = makeLog(); ;g
alice(log.write, log.size); }

bob(log.read, log.size);
let log = makeLog();
alice(log.writer);
bob(log.reader);

Further limiting Bob’s authority

» We would like to give Bob only temporary
read access to the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makeLog();

alice(log.write);
bob(log.read);

Use caretaker to insert access control logic

» We would like to give Bob only temporary
read access to the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makeLog();

let [rlog, revoke] = makeRevokablelLog(log);
alice(log.write);

bob(rlog.read);

Use caretaker to insert access control logic

» We would like to give Bob only temporary
read access to the log.

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makeLog();

let [rlog, revoke] = makeRevokablelLog(log);
alice(log.write);

bob(rlog.read);

// to revoke Bob’s access:
revoke();

A caretaker Is Just a proxy object

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

function makeRevokablelLog(log) {
function revoke() { log = null; };
let proxy = {
write(msg) { log.write(msg); }

let log = makeLog(); read() { return log.read(); }

let [rlog, revoke] = makeRevokablelLog(log); 1.
alice(log.write); ’

bob(rlog.read); , return harden([proxy, revoke]);

A caretaker Is Just a proxy object

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }

return harden({read, write}): function makeRevokablelog(log) {

function revoke() { log = null; };

¥ let proxy = {

. write(msg) { log.write(msg); }
let log = makelLog(); read() { return log.read(); }
let [rlog, revoke] = makeRevokablelLog(log); 1.
alice(log.write); ’

bob(rlog.read); , return harden([proxy, revoke]);

// to revoke Bob’s access:
revoke();

Membranes are generalized caretakers Bob

- let msgs = read()

* Proxy any object reachable from the log

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makelLog();

let [rlog, revoke] = makeRevokableMembrane(log);
alice(log.write);

bob(rlog.read);

Membranes are generalized caretakers Bob

- let msgs = read()

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makelLog();

let [rlog, revoke] = makeRevokableMembrane(log);
alice(log.write);

bob(rlog.read);

// to revoke Bob’s access:
revoke();

Membranes are generalized caretakers Bob

- let msgs = read()

import * as alice from "alice.js";
import * as bob from “bob.7js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

¥

let log = makelLog();

let [rlog, revoke] = makeRevokableMembrane(log);
alice(log.write);

bob(rlog.read);

// to revoke Bob’s access:
revoke();

Deep dive at tvcutsem.qgithub.io/membranes

http://tvcutsem.github.io/membranes

Another exercise in POLA

*Eve needs access to the log as a whole, but we don't
want her to read or modity the content of the log

import * as alice from "alice.js";
import * as bob from “bob.js";
import * as eve from “eve.js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

h

let 1log = makeLog();

alice(log.write);
bob(log.read);
eve(log);

Sealer/unsealer pairs

» A sealer/unsealer pair enables the confidentiality and integrity
of crypto, but in-process and without any actual crypto

» seal “encrypts” objects, unseal “decrypts” objects

import * as alice from "alice.js";
import * as bob from “bob.js";
import * as eve from “eve.js";

function makeLog() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

h

let 1log = makeLog();

let [seal, unseal] = makeSealerUnsealerPair();
alice((msg) => log.write(seal(msg));

bob(() => log.read().map(msg => unseal(msg));
eve(log);

seal+write read+unseal

Sealer/unsealer pairs

function makeSealerUnsealerPair() {
const boxes = new WeakMap();
function seal(value) {
const box = harden({});
boxes.set(box, value);
return box;
}
function unseal(box) {
1f (boxes.has(box)) {
return boxes.get(box);
} else {

throw new Error("invalid box");

¥
¥

return harden([seal, unseal]);

¥

(code adapted from Google Caja reference implementation. Based on ideas from James Morris, 1973)

Alice stores only a meaningless ‘lbox’ object in the log

function makeSealerUnsealerPair() {
const boxes = new WeakMap();
function seal(value) {
const box = harden({});
boxes.set(box, value);

return box;
} (msg)=>write(seal(msg))

return harden([seal, unseal]);

¥

Bob can read the box from the log, and retrieve M via the unsealer

function makeSealerUnsealerPair() {
const boxes = new WeakMap();

function unseal(box) {
1f (boxes.has(box)) {
return boxes.get(box);

} else {
throw new Error("invalid box");

¥
¥

return harden([seal, unseal]);

¥

()=>unseal(read())

Eve can access the box, but not the unsealer. She can’t unbox.

function makeSealerUnsealerPair() {
const boxes = new WeakMap();
function seal(value) {
const box = harden({});
boxes.set(box, value);
return box;
}
function unseal(box) {
1f (boxes.has(box)) {
return boxes.get(box);
} else {

throw new Error("invalid box");

¥
¥

return harden([seal, unseal]);

¥

This is called “rights amplification”. It's a useful POLA building block.

» Only code that has access to both the unseal function
and the original object can access the sealed value

import * as alice from "alice.js"; Embeddlng environment

import * as bob from “bob.js";
import * as eve from “eve.js";

function makelLogger() {
const messages = [];
function write(msg) { messages.push(msg); }
function read() { return [...messages]; }
return harden({read, write});

h

let log = makelLogger();

let [seal, unseal] = makeSealerUnsealerPair();
alice((msg) => log.write(seal(msg));

bob(() => log.read().map(msg => unseal(msg));
eve(log);

seal+write read+unseal

These patterns are used In industry

) <

Google Caja Mozilla Firefox

Uses taming for safe html Uses membranes to isolate
embedding of third-party content site origins from privileged JS code

@)ddabte %

Moddable XS MetaMask Snaps

Uses SES for safe end-user Uses SES to sandbox plugins
scripting of loT products INn their crypto web wallet

salesforce

Salesforce Lightning

Uses SES and membranes to
Isolate & observe Ul components

=" AGORIC

Agoric Zoe

Uses SES for writing smart contracts

executed on a blockchain

TECHORAMA

Conclusion

Summary

» Security as the extreme of modularity.

* Modern JS apps are composed from many
modules. You can’t trust them all.

* Traditional security boundaries don’t exist
between modules. SES adds basic isolation.

* |solated modules must still interact.

* Design patterns exist to compose modules in
ways that minimize unwanted interactions.

*Understanding these patterns is important in a
world of > 1,000,000 NPM modules

Environment

JS app

Shared resources

. ; . TECHORAMA

Architecting RObust
)3 vaScript Application S

A practltloner S gwde to Secure ECMAScript

- Tom Van Cutsem

, @tvcutsem

4 Thanllﬁs for listening!

Acknowledgements

- Mark S. Miller (for the inspiring and ground-breaking work on Object-capabilities, Robust Composition, E, Caja,
JavaScript and Secure ECMAScript)

- Marc Stiegler’s “PictureBook of secure cooperation” (2004) was a great source of inspiration for this talk

» Doug Crockford’s Good Parts and How JS Works books were an eye-opener and provide a highly opinionated take on
how to write clean, good, robust JavaScript code

- The Cap-talk and Friam community for inspiration on capability-security and capability-secure design patterns

» TC39 and the es-discuss community, for the interactions during the design of ECMAScript 2015, and in particular all the
feedback on the Proxy API

« The SES secure coding guide: https://qgithub.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-
guide.md

https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md
https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md
https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md
https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md

Further Reading

- Compartments: https://qithub.com/tc39/proposal-compartments and https://qgithulb.com/Agoric/ses-shim

- Realms: https://qithub.com/tc39/proposal-realms and github.com/Agoric/realms-shim

- SES: https://qgithub.com/tc39/proposal-ses and https://qithub.com/endojs/endo/tree/master/packages/ses

- Subsetting ECMAScript: hitps://github.com/Agoric/Jessie

- Caja: https://developers.google.com/caja

-+ Sealer/Unsealer pairs: hitp://erights.ora/elib/capability/ode/ode-capabilities.html and http://www.erights.ora/history/
morris/3.pdf

- Making Javascript Safe and Secure: Talks by Mark S. Miller (Agoric), Peter Hoddie (Moddable), and Dan Finlay (MetaMask):
https://www.youtube.com/playlist?list=PL zDw4 T Tug5025J5M3twErKImriOraGik|

- Moddable: XS: Secure, Private Javascript for Embedded loT: https://blog.moddable.com/blog/secureprivate/

- Membranes in JavaScript: tvcutsem.aithub.io/|s-membranes and tvcutsem.github.io/membranes

https://github.com/tc39/proposal-compartments
https://github.com/Agoric/ses-shim
https://github.com/tc39/proposal-realms
http://github.com/Agoric/realms-shim
https://github.com/tc39/proposal-ses
https://github.com/endojs/endo/tree/master/packages/ses
https://github.com/Agoric/Jessie
https://developers.google.com/caja
http://erights.org/elib/capability/ode/ode-capabilities.html
http://www.erights.org/history/morris73.pdf
http://www.erights.org/history/morris73.pdf
https://www.youtube.com/playlist?list=PLzDw4TTug5O25J5M3fwErKImrjOrqGikj
https://blog.moddable.com/blog/secureprivate/
http://tvcutsem.github.io/js-membranes
http://tvcutsem.github.io/membranes

