
Architecting Robust JavaScript Applications

Tom Van Cutsem

@tvcutsem

JSCONF.BE 2020

About me

• Computer scientist with broad experience in academia and industry

• Past TC39 member and active contributor to ECMAScript standards

• Author of Proxy and Reflect APIs

• Author of Traits.js

• Passionate user and advocate of JavaScript

@tvcutsemtvcutsem.github.io tvcutsem

A software architecture view of security

OAuth
principals

cookies

objects
functions

visibility

dataflow

dependencies

modules

mutation

iframe sandbox

same-origin policy

CORS

content security policy

html sanitization

A software architecture view of security

“Security is just the extreme of Modularity”
- Mark S. Miller

Modularity: avoid needless dependencies (to prevent bugs)
Security: avoid needless vulnerabilities (to prevent exploits)
Vulnerability is a form of dependency!

This Talk

• Part I: why it’s becoming important to write more robust applications

• Part II: patterns that let you write more robust applications

Part I 
The need for more robust JavaScript apps

It’s no longer just about the Web. JavaScript is used widely across tiers

MobileEmbedded Desktop/Native Server Database

ECMAScript: “Standard” JavaScript

V8

Spidermonkey

Nitro

V8

JerryScript
Moddable XS

Duktape
Espruino

A Tale of Two Standards Bodies

"Any organization that designs a system […] will produce a design whose
structure is a copy of the organization's communication structure."

-- Melvyn Conway, 1967

• Standardizes JavaScript
• Core language + small standard library
• Math, JSON, String, RegExp, Array, …
• “User mode”

• Standardizes browser APIs
• Large set of system APIs
• DOM, LocalStorage, XHR, Media Capture, …
• “System mode”

“User mode” separation makes JS an embeddable compute engine

JS (User mode)

Embedding environment (System mode)

Well-defined boundary

JavaScript applications are now built from thousands of modules

(source: modulecounts.com, May 2020)

1,000,000 modules on NPM

http://modulecounts.com

JavaScript applications are now built from thousands of modules

(source: modulecounts.com, May 2020)

1,000,000 modules on NPM

(source: npm blog, December 2018)

“The average modern web application has over
1000 modules […] 97% of the code in a modern
web application comes from npm. An individual
developer is responsible only for the final 3% that

makes their application unique and useful.”

http://modulecounts.com

It’s all about trust

• It is exceedingly common to run code you don’t know/trust in a common
environment

Webpage

Browser env (e.g. Firefox)

Web server app

Server env (e.g. node)

Module Module Module Module

Requests FilesDOM Cookies

It’s all about trust

• It is exceedingly common to run code you don’t know/trust in a common
environment

Webpage

Browser env (e.g. Firefox)

Web server app

Server env (e.g. node)

Module Module Module Module

<script src=“http://evil.com/ad.js”> npm install evil-logger

Requests FilesDOM Cookies

It’s all about trust

• It is exceedingly common to run code you don’t know/trust in a common
environment

Webpage

Browser env (e.g. Firefox)

Module Module

DOM Cookies

<script src=“http://evil.com/ad.js”>

It’s all about trust

• It is exceedingly common to run code you don’t know/trust in a common
environment

Web server app

Server env (e.g. node)

Module Module

Requests Files

npm install evil-logger

(source: theregister.co.uk)

http://theregister.co.uk

Increasing awareness

• Great tools, but address the symptoms, not the root cause

npm audit

GitHub security alertsnpm security advisories

Snyk vulnerability DB

Avoiding interference is the name of the game

• Shield important resources/APIs from modules that don’t need access

• Apply Principle of Least Authority (POLA) to application design

Webpage

Browser env (e.g. Firefox)

Web server app

Server env (e.g. node)

Module Module Module Module

Requests FilesDOM Cookies

Prerequisite: isolating JavaScript modules

• Today: JavaScript offers no “User mode” isolation 
mechanisms

• Lots of “System mode” isolation mechanisms, 
 but non-portable:

• Web Workers: forced async communication, 
no shared memory

• iframes: mutable primordials, “identity discontinuity”

• node vm module: same issues (note: prefer vm2 npm module)

JS app
Environment

Module Module

Shared resources

Realms and Compartments: “User mode” isolation

Realm

Host environment

Compartment
Realm

Compartment

Array

globalThis

Array

globalThis globalThis
Primordials*Math

Objects

Deep-frozen 
Primordials

Deep-frozen 
Objects

Math

* Primordials: built-in objects like Object, Object.prototype, Array, Function, Math, JSON, etc.

• Intuitions: “iframe without DOM”, “principled version of node’s `vm` module”

Realms and Compartments: “User mode” isolation

let r = new Realm();
r.globalThis.x = 1;
let res = r.globalThis.eval(`x + 1`);

// fails, no non-standard globals
r.globalThis.eval(`process.exit(0)`);

// does not affect outer Realm’s Array
r.globalThis.eval(
 `Array.prototype.push = undefined`);

let arr = r.globalThis.eval(`[]`);
arr instanceof Array // => false

Realms Compartments

let c = new Compartment({x: 1})
let res = c.evaluate(`x + 1`) // => 3

// fails, no non-standard globals
c.evaluate(`process.exit(0)`);

// fails, primordials are immutable
c.evaluate(
 `Array.prototype.push = undefined`);

let arr = c.evaluate(`[]`)
arr instanceof Array; // => true

Realms and Compartments: “User mode” isolation

• Each realm has its own set of mutable
primordials

• Useful for sandboxing “legacy” code that
mutates primordials

• TC39 Stage 2: https://github.com/tc39/proposal-realms/

• Shim available at github.com/Agoric/realms-shim

Realms Compartments

• Each compartment shares a set of immutable and
powerless primordials

• Preferred for well-behaved code. More lightweight
than Realms.

• No “identity discontinuity” between compartments.

• Compartments have “hooks” to customize module
imports (e.g. load each module in own
compartment)

• TC39 Stage 1: https://github.com/tc39/proposal-
compartments

• Shim available at https://github.com/Agoric/ses-shim

https://github.com/Agoric/realms-shim
https://github.com/tc39/proposal-compartments
https://github.com/tc39/proposal-compartments
https://github.com/tc39/proposal-compartments
https://github.com/tc39/proposal-compartments
https://github.com/Agoric/ses-shim

Secure ECMAScript (SES)

(inspired by the diagram at https://github.com/Agoric/Jessie)

• A subset of JavaScript,
building on Compartments

• Key idea: no powerful objects
by default. SES code can only
affect the outside world
through objects (capabilities)
explicitly granted to it (POLA)

• TC39 Stage 1: https://
github.com/tc39/proposal-ses

import ‘ses’;
lockdown();

Full ECMAScript (“WAT” JavaScript)

“use strict” (“sane” JavaScript)

Secure Ecmascript (“tamed” JavaScript)

JSON (“data” JavaScript)

SES = ES-strict - mutable primordials 
 - ambient authority (powerful globals) 
 + Compartments

https://github.com/Agoric/Jessie
https://github.com/tc39/proposal-ses
https://github.com/tc39/proposal-ses

LavaMoat

• Build tool that puts each of your app’s package
dependencies into its own SES sandbox

• Auto-generates config file indicating authority
needed by each package

• Plugs into Webpack and Browserify

https://github.com/LavaMoat/lavamoat

https://github.com/LavaMoat/lavamoat

End of Part I: recap

• Modern JS apps are composed from many
modules. You can’t trust them all.

• Traditional security boundaries don’t exist
between modules. SES adds basic isolation.

• Isolated modules must still interact!

• Design patterns exist to compose modules in
ways that minimize unwanted interactions.

• Going forward: assume all code running in Secure
ECMAScript environment

JS app
Environment

Module Module

Shared resources

Part II 
Robust Application Design Patterns

Design Patterns

Observer

Factory

State
Singleton

Visitor

Design Patterns for secure cooperation

Reliable branding

Sealer/unsealer pair

API Taming
Membrane

Defensible object

#1: make private state truly private

class Counter {
 constructor() {
 this.count_ = 0;
 }
 incr() { return ++this.count_; }
 decr() { return --this.count_; }
}

let ctr = new Counter();
ctr.count_ // 0

JS app
Alice Mallory

ctr

let aliceMod = /* load alice’s code */
let malloryMod = /* load mallory’s code */
aliceMod(ctr);
malloryMod(ctr);

#1: make private state truly private

• Private fields (TC39 Stage 3 proposal)

class Counter {
 #count = 0;

 incr() { return ++this.#count; }
 decr() { return --this.#count; }
}

let ctr = new Counter();
ctr.#count // error

(https://github.com/tc39/proposal-class-fields)

JS app
Alice Mallory

ctr

let aliceMod = /* load alice’s code */
let malloryMod = /* load mallory’s code */
aliceMod(ctr);
malloryMod(ctr);

https://github.com/tc39/proposal-class-fields

#1: hide mutable state through closure

• A record of closures hiding state is a fine representation of an object of
methods hiding instance vars

• Pattern long advocated by Crockford in lieu of using classes or prototypes

function makeCounter() {
 let count = 0;
 return {
 incr() { return ++count; },
 decr() { return --count; }
 }
}

let ctr = makeCounter();
ctr.count // undefined

makeCounter

incr

decr
count

(source: Mark S. Miller, “bringing object-orientation to security programming”)

#2: make objects tamper-proof by freezing them

• Javascript objects are mutable records: any field can be overwritten by any
of its clients (intentionally or unintentionally)

makeCounter

incr

decr
count

(source: Mark S. Miller, “bringing object-orientation to security programming”)

function makeCounter() {
 let count = 0;
 return Object.freeze({
 incr() { return ++count; },
 decr() { return --count; }
 })
}

let ctr = makeCounter();
ctr.incr = ctr.decr; // error

#2: make objects tamper-proof by freezing them

• Note: freezing an object does not transitively freeze any objects/functions
reachable from the object. Full tamper-proofing requires a ‘deep-freeze’

• SES provides such a ‘deep-freeze’ function called “harden”

makeCounter

incr

decr
count

(source: Mark S. Miller, “bringing object-orientation to security programming”)

import ‘ses’;
lockdown()

function makeCounter() {
 let count = 0;
 return harden({
 incr() { return ++count; },
 decr() { return --count; }
 })
}

let ctr = makeCounter();
ctr.incr.apply = function() {…}; // error

#3: safe monkey-patching

makeCounter

incr
count

decr

ctr.color = “red”;

• It is common for one module to want to “expand” the objects of another
module with new properties.

• Common practice today: monkey-patching

#3: safe monkey-patching using WeakMaps

• WeakMaps can store new properties without mutating the original objects

• Unlike traditional monkey-patching, also works for frozen objects

makeCounter

incr
count

decr

ctr color

“red”

const ctr = makeCounter();
const color = new WeakMap();
color.set(ctr, “red”);
color.get(ctr); // “red”

ctr.color = “red”;

#3: safe monkey-patching using WeakMaps

• Bonus: only code that has access to both the WeakMap and the original
object can access the value

• “rights amplification”

makeCounter

incr
count

decr
const ctr = makeCounter();
const color = new WeakMap();
color.set(ctr, “red”);
color.get(ctr); // “red”

ctr color

“red”
ctr.color = “red”;

#4: use sealer/unsealer pairs to “encrypt” objects with no crypto

• Consider the following (common) setup:

• How can code inside Alice safely pass objects to Bob through Eve while preventing Eve
from inspecting or tampering with her objects?

• How can code inside Bob verify that the objects passed to it from Eve originated from Alice?

App

Embedding environment

Module
Alice

Module
Eve

Sensitive resources

Module
Bob

#4: use sealer/unsealer pairs to “encrypt” objects with no crypto

• Alice creates sealer/unsealer pair and gives unsealer to Bob

• Alice seals her objects using sealer before exposing to Eve

• Bob unseals the objects received from Eve using unsealer

App

Embedding environment

Module
Alice

Module
Eve

Sensitive resources

Module
Bob

// Alice says:
const [seal, unseal] =
 makeSealerUnsealerPair();
bob.setup(unseal);

const box = seal(value);
eve.give(box);

// Bob says:
function setup(unseal) {
 eve.register((box) => {
 const value = unseal(box);
 // use value from Alice
 })
}

#4: use sealer/unsealer pairs to “encrypt” objects with no crypto

function makeSealerUnsealerPair() {
 const boxes = new WeakMap();
 function seal(value) {
 const box = Object.freeze({});
 boxes.set(box, value);
 return box;
 }
 function unseal(box) {
 if (boxes.has(box)) {
 return boxes.get(box);
 } else {
 throw new Error("invalid box");
 }
 }
 return harden([seal, unseal]);
}

(code adapted from Google Caja reference implementation. Based on ideas from James Morris, 1973)

#5: use the Proxy pattern to attenuate APIs (taming)

• Expose powerful objects through restrictive proxies to third-party code

• For example, a proxy object may expose only a subset of the API

JS app
Alice Bob
tamed proxy

Sensitive resources

resource

#5: use the Proxy pattern to attenuate APIs (taming)

• Implement whatever access control policy is relevant to your app

• Example: attenuating read-write access to read-only access:

JS app
Alice Bob

roFile

Sensitive resources

rwFile

interface File {
 read(): string[]
 write(string[] s): void
 numLines(): number
}

#5: use the Proxy pattern to attenuate APIs (taming)

• Implement whatever access control policy is relevant to your app

• Example: attenuating read-write access to read-only access:

function makeReadOnly(file) {
 return harden({
 read() { return file.read(); }
 write(s) { throw `readonly`; }
 numLines() { return file.numLines(); }
 });
}

// Alice says:
const roFile = makeReadOnly(rwFile);
bob.give(roFile);

JS app
Alice Bob

roFile

Sensitive resources

rwFile

#5: use the Proxy pattern to attenuate APIs (taming)

• Implement whatever access control policy is relevant to your app

• Example: attenuating read-write access to read-only access:

JS app
Alice Bob

roFile

Sensitive resources

rwFile

interface File {
 read(): string[]
 write(string[] s): void
 numLines(): number
 getParent(): Directory
}

interface Directory {
 listFiles(): File[]
}

#5: use the Proxy pattern to attenuate APIs (taming)

• Pitfall: intercepting transitive access to the underlying resource
function makeReadOnly(file) {
 return harden({
 read() { return file.read(); }
 write(s) { throw `readonly`; }
 numLines() { return file.numLines(); }
 getParent() { return file.getParent(); }
 });
}

// Alice says:
const roFile = makeReadOnly(rwFile);
bob.give(roFile);

// Bob says:
const dir = roFile.getParent();
dir.listFiles()[0].write(`gotcha`);

JS app
Alice Bob

roFile

Sensitive resources

rwFile

dir

#6: use the Membrane pattern to isolate entire groups of objects

• Membranes generalize the Proxy pattern: wrap groups of objects (object
graphs) rather than one single object

• The trick is to dynamically inject new proxy objects by intercepting all
property access / method calls

Full article at tvcutsem.github.io/membranes

http://tvcutsem.github.io/membranes

#6: use the Membrane pattern to isolate entire groups of objects

• Membranes generalize the Proxy pattern: wrap groups of objects (object
graphs) rather than one single object

• The trick is to dynamically inject new proxy objects by intercepting all
property access / method calls

Full article at tvcutsem.github.io/membranes

http://tvcutsem.github.io/membranes

• Realms & Compartments manage initial authority. Membranes manage subsequent interactions.

Membranes, Compartments, Realms

Realm

Host environment

Compartment
Realm

Compartment

Array

globalThis

Array

globalThis globalThis
PrimordialsMath

Objects

Deep-frozen 
Primordials

Deep-frozen 
Objects

Math

Membrane

These patterns are used in industry

Uses taming for safe html 
embedding of third-party content

Mozilla Firefox Salesforce Lightning

Moddable XS

Uses membranes to isolate
site origins from privileged JS code

Google Caja
Uses SES and membranes to 

isolate & observe UI components

Uses SES for safe end-user  
scripting of IoT products

Uses SES for writing smart contracts 
executed on a blockchain

Uses SES to sandbox plugins 
in their crypto web wallet

MetaMask Snaps Agoric Zoe

Conclusion

Summary

• Security as the extreme of modularity.

• Modern JS apps are composed from many
modules. You can’t trust them all.

• Traditional security boundaries don’t exist
between modules. SES adds basic isolation.

• Isolated modules must still interact.

• Design patterns exist to compose modules in
ways that minimize unwanted interactions.

•Understanding these patterns is important in a
world of > 1,000,000 NPM modules

JS app
Environment

Module Module

Shared resources

Summary

• Security as the extreme of modularity.

• Modern JS apps are composed from many
modules. You can’t trust them all.

• Traditional security boundaries don’t exist
between modules. SES adds basic isolation.

• Isolated modules must still interact.

• Design patterns exist to compose modules in
ways that minimize unwanted interactions.

•Understanding these patterns is important in a
world of > 1,000,000 NPM modules

JS app
Environment

Module Module

Shared resources

@tvcutsem

Thank You!

Acknowledgements
• Mark S. Miller (for the inspiring work on Object-capabilities, Robust Composition, E, Caja, JavaScript and Secure

ECMAScript)

• Marc Stiegler’s “PictureBook of secure cooperation” (2004) was a great source of inspiration for this talk

• Doug Crockford’s Good Parts and How JS Works books were an eye-opener and provide a highly opinionated take on
how to write clean, good, robust JavaScript code

• The Cap-talk and Friam community for inspiration on capability-security and capability-secure design patterns

• TC39 and the es-discuss community, for the interactions during the design of ECMAScript 2015, and in particular all the
feedback on the Proxy API

References
• Compartments: https://github.com/tc39/proposal-compartments

• Realms: https://github.com/tc39/proposal-realms

• SES: https://github.com/tc39/proposal-ses and https://github.com/Agoric/SES (ancestral version at https://github.com/google/caja/
wiki/SES)

• Subsetting ECMAScript: https://github.com/Agoric/Jessie

• Caja: https://developers.google.com/caja

• Sealer/Unsealer pairs: <http://erights.org/elib/capability/ode/ode-capabilities.html> and <http://www.erights.org/history/
morris73.pdf>

• Making Javascript Safe and Secure: Talks by Mark S. Miller (Agoric), Peter Hoddie (Moddable), and Dan Finlay (MetaMask): <https://
www.youtube.com/playlist?list=PLzDw4TTug5O25J5M3fwErKImrjOrqGikj>

• Moddable: XS: Secure, Private JavaScript for Embedded IoT: https://blog.moddable.com/blog/secureprivate/

• Membranes in JavaScript: tvcutsem.github.io/js-membranes and tvcutsem.github.io/membranes

https://github.com/tc39/proposal-compartments
https://github.com/tc39/proposal-realms
https://github.com/tc39/proposal-ses
https://github.com/Agoric/SES
https://github.com/google/caja/wiki/SES
https://github.com/google/caja/wiki/SES
https://github.com/Agoric/Jessie
https://developers.google.com/caja
http://erights.org/elib/capability/ode/ode-capabilities.html
http://www.erights.org/history/morris73.pdf
http://www.erights.org/history/morris73.pdf
https://www.youtube.com/playlist?list=PLzDw4TTug5O25J5M3fwErKImrjOrqGikj
https://www.youtube.com/playlist?list=PLzDw4TTug5O25J5M3fwErKImrjOrqGikj
https://blog.moddable.com/blog/secureprivate/
http://tvcutsem.github.io/js-membranes
http://tvcutsem.github.io/membranes

