
Blockchain and Distributed Ledgers
Tom Van Cutsem

DistriNet, KU Leuven

DARE Summer School September 8-12, 2025

@tvcutsem.bsky.socialgithub.com/tvcutsemtvcutsem.github.io be.linkedin.com/in/tomvc @tvcutsem@techhub.social

https://github.com/tvcutsem
https://be.linkedin.com/in/tomvc
https://bsky.app/profile/tvcutsem.bsky.social
https://techhub.social/@tvcutsem
https://tvcutsem.github.io

Course topics

• The origins of Blockchain
• What are the cryptographic building blocks of a blockchain?
• How does a blockchain process transactions? Life of a blockchain transaction.
• Consensus in blockchain networks: Proof-of-Work, Proof-of-Stake, BFT Consensus
• Permissioned versus Permissionless blockchain networks
• Blockchains as trusted computers: smart contracts and Ethereum
• Building decentralized applications using blockchains
• Conclusion and latest trends

2

Blockchain: origins

3

Electronic cash

• Since the dawn of the Internet, cryptographers have tried to create digital
currencies that are more similar to physical cash or coins

• Money as a “bearer instrument” token: whoever holds the token can spend it

• Payments are anonymous and untraceable

• Example: e-cash (Digicash)

4

David Chaum
Electronic cash (1982)

The problem with electronic cash: the Double Spending Problem

5

Transaction

signed, Alice

Alice Bob

I hereby transfer
1 digicoin to Bob

network
signed, Alice

I hereby transfer
1 digicoin to Bob

The problem with electronic cash: the Double Spending Problem

6

Transaction

signed, Alice

Alice Bob

Carol

I hereby transfer
1 digicoin to Bob

Transaction

signed, Alice

I hereby transfer
1 digicoin to Carol

network
signed, Alice

I hereby transfer
1 digicoin to Bob

signed, Alice

I hereby transfer
1 digicoin to Carol

The problem with electronic cash: the Double Spending Problem

7

Transaction

signed, Alice

Alice Bob

Carol

I hereby transfer
1 digicoin to Bob

Transaction

signed, Alice

I hereby transfer
1 digicoin to Carol

network
signed, Alice

I hereby transfer
1 digicoin to Bob

signed, Alice

I hereby transfer
1 digicoin to Carol

How can Bob and Carol be sure they are now the sole owner of Alice’s coin?

Straightforward solution: use a central clearing house

• The clearing house does the accounting of what tokens have
already been spent. This avoids “double spending” the
same token.

• The payments themselves can still be anonymous! We just
need to record spent tokens. Privacy risks partially mitigated
using blind signatures.

• Problem: everyone depends on the clearing house. Risks:

• Technical risks: availability (what if the clearing house is
unavailable?) and security (what if the clearing house gets
attacked? This may include insider threats!)

• Economic and political risks: what if the company
running the clearing house goes bankrupt or is threatened
in court? (E.g. Digicash actually went bankrupt in 1998)

8

clearing
house

Blockchain networks

• Bitcoin’s breakthrough idea: rather than having a single party record who owns what, let
everyone collectively do the accounting of who owns what

• Store account balances in an append-only replicated database called a blockchain

9

Fully decentralised
payment network

clearing
house

clearing
house

clearing
house

clearing
house

The “Bitcoin whitepaper”
by “Satoshi Nakamoto”, 2009

Bitcoin’s blockchain

• Replace central clearing house by a public, replicated, append-only,
tamper-resistant ledger

• Validator nodes group transactions in “blocks”, “chained” together into a
linear sequence using cryptographic hashes, secured using “Proof of Work”

10

Block n

Tx Tx

Block n+1

Transaction

signed, Alice

I hereby transfer
1 bitcoin to Bob H(n-1) Tx TxH(n) Tx

hash

What are the cryptographic building blocks of a blockchain?

11

How cryptography is used to securely record transactions on a blockchain

12

AlicePublic key Private key

Alice pays Bob $10
Transaction

sign

generateKeys

0x4A2F6…
Signature

Block

Alice pays Bob $10
Bob pays Carol $10
Carol pays Alice $10

verify

Victor
the validator

The network pays Victor $1
cryptographic hash H(x)

0x003FA86…
Hash

Bob pays Dave $50
Alice pays Carol $25
…

Block chain

0

0x4B03721…

Common cryptographic algorithms used in blockchain systems

13

cryptographic hash H(x)

ECDSA (secp256k1 curve)
Elliptic curve digital signature algorithmSecure hash algorithm

SHA-256 or KECCAK-256

256-bit hash

arbitrary-length input string || nonce

sign

generateKeys

verify
M

512-bit sig

256-bit private key512-bit public key

Cryptographic hashes

Desirable properties:
• H is collision-resistant
• H hides its input x
• H is “puzzle-friendly”

Desirable properties:
• Valid signatures must verify
• Signatures are unforgeable
• Signature is unique to M

Digital signatures

Common cryptographic algorithms used in blockchain systems

14

Hash pointers

The hash is used both as:
•a unique identifier (to identify and lookup the data)
•a digest (to verify that the data has not been tampered with)

Block n
H(n-1) H(n)

Block n-1 Tx Tx Tx

“hash pointer”

Any non-cyclical data structure can be built from hash pointers

Tx Tx

H(n-2)

Common cryptographic algorithms used in blockchain systems

15

Why use hash pointers?

•We want the transaction log history to be immutable (i.e. only append new transaction, not edit past transactions).
•By using hash pointers, we ensure that modifying any data in any past block would invalidate the hash pointers of all

the following blocks.
•This makes it immediately clear to anyone with a historical copy of the blockchain that data has been tampered with.
•This makes the transaction log “tamper-evident”.

Block n
H(n-1) H(n)

Block n-1 Tx Tx Tx

“hash pointer”

Tx Tx

H(n-2)

Merkle Trees (a.k.a. Binary hash trees)

• Invented by cryptographer Ralph Merkle
in 1979

• Goal: efficiently verify that a piece of
data is included in a list of data blocks

• Leaf nodes are labelled with
cryptographic hash of a single data
element

• Branch nodes are labelled with
cryptographic hash of the concatenation
of the labels of its children

16

(Image credit: T. Kanstrén, Merkle Trees: Concepts and Use Cases, medium.com)

https://medium.com/coinmonks/merkle-trees-concepts-and-use-cases-5da873702318

Merkle Trees: cryptographic commitment

• Changing a single data item would
change the leaf hash, and
consequently all intermediate hash
values up to the root hash

• The root node hash thus
represents a cryptographic
commitment to the entire list of
data items

17

(Image credit: T. Kanstrén, Merkle Trees: Concepts and Use Cases, medium.com)

https://medium.com/coinmonks/merkle-trees-concepts-and-use-cases-5da873702318

Merkle Trees support efficient inclusion proofs

• Goal: prove that a data item is part of
the original list (e.g. Data3)

• Only need the hash values of the
branches along the data item’s path

• O(log(n)) steps, where n is the number
of data items (leaves)

• How many steps would have been
needed if we would have just stored
the hash of the list of data items?

18

(Image credit: T. Kanstrén, Merkle Trees: Concepts and Use Cases, medium.com)

= Merkle Path for Data3

= recomputed from Merkle Path

https://medium.com/coinmonks/merkle-trees-concepts-and-use-cases-5da873702318

Merkle trees in the Bitcoin blockchain
• An actual Bitcoin block consists of a Block Header and a transaction list

stored separately as a Merkle Tree

• The block header contains the root hash of the Merkle Tree

• This enables clients to efficiently verify that a transaction was included in
a block without downloading the full transaction information in each
block (“SPV” or “Simplified Payment Verification”):

• Assume client has information on a transaction to verify, including its
associated Merkle Path

• 1. Client queries the Bitcoin network for block headers included in
the longest chain

• 2. Client can recompute Merkle root hash from transaction
information and Merkle Path

• 3. Client can verify that its computed root hash is part of a block
header in the longest chain

19

(Source: S. Nakamoto, 2008, “Bitcoin: A Peer-to-Peer Electronic Cash System”)

New transaction broadcasts do not necessarily need to reach all nodes. As long as they reach

many nodes, they will get into a block before long. Block broadcasts are also tolerant of dropped

messages. If a node does not receive a block, it will request it when it receives the next block and

realizes it missed one.

6. Incentive

By convention, the first transaction in a block is a special transaction that starts a new coin owned

by the creator of the block. This adds an incentive for nodes to support the network, and provides

a way to initially distribute coins into circulation, since there is no central authority to issue them.

The steady addition of a constant of amount of new coins is analogous to gold miners expending

resources to add gold to circulation. In our case, it is CPU time and electricity that is expended.

The incentive can also be funded with transaction fees. If the output value of a transaction is

less than its input value, the difference is a transaction fee that is added to the incentive value of

the block containing the transaction. Once a predetermined number of coins have entered

circulation, the incentive can transition entirely to transaction fees and be completely inflation

free.

The incentive may help encourage nodes to stay honest. If a greedy attacker is able to

assemble more CPU power than all the honest nodes, he would have to choose between using it

to defraud people by stealing back his payments, or using it to generate new coins. He ought to

find it more profitable to play by the rules, such rules that favour him with more new coins than

everyone else combined, than to undermine the system and the validity of his own wealth.

7. Reclaiming Disk Space

Once the latest transaction in a coin is buried under enough blocks, the spent transactions before

it can be discarded to save disk space. To facilitate this without breaking the block's hash,

transactions are hashed in a Merkle Tree [7][2][5], with only the root included in the block's hash.

Old blocks can then be compacted by stubbing off branches of the tree. The interior hashes do

not need to be stored.

A block header with no transactions would be about 80 bytes. If we suppose blocks are

generated every 10 minutes, 80 bytes * 6 * 24 * 365 = 4.2MB per year. With computer systems

typically selling with 2GB of RAM as of 2008, and Moore's Law predicting current growth of

1.2GB per year, storage should not be a problem even if the block headers must be kept in

memory.

4

BlockBlock
Block Header (Block Hash)

Prev Hash Nonce

Hash01

Hash0 Hash1 Hash2 Hash3

Hash23

Root Hash

Hash01

Hash2

Tx3

Hash23

Block Header (Block Hash)

Root Hash

Transactions Hashed in a Merkle Tree After Pruning Tx0-2 from the Block

Prev Hash Nonce

Hash3

Tx0 Tx1 Tx2 Tx3

How does a blockchain network process transactions?

A.k.a. the “life of a blockchain transaction”

20

Step 1: clients submit signed transactions

• Clients concurrently submit signed transactions to one or more validators.

21

Blockchain network

Example transactions…

= “send x bitcoin to address a”

= “call function f on contract
a with input x”

= “please store these bytes”

client

Step 2: validators validate and gossip transactions

• A validator is a network node that maintains an unordered set (“mempool”) of incoming
transactions. It collects, validates and broadcasts transactions to other peers (using a gossip
broadcast protocol)

22

Blockchain network

validator

Unordered set of
transactions

Step 3: a validator produces a block of transactions

• At regular intervals, a subset of validators pick a subset of transactions from the pool and
sequence them, thus producing an ordered list of transactions. These validators are
sometimes called “miners” or “staking validators”. The transaction list is called a “block”

23

Blockchain network
1

2

3

4

Block

Ordered list of
Transactions

staking validator

Unordered set of
transactions

Step 4: validators gossip block and append to the blockchain

• The block is broadcast to all validators (again using gossip). Each validator checks again if
all transactions in the block are valid. If yes, they append the block to their local transaction
log (aka the blockchain).

24

Blockchain network
1

2

3

4

Block

Ordered list of
Transactions

Unordered set of
transactions

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Consensus

• All validators must reach consensus on the exact same transaction history!

• Need to make sure that blocks get appended everywhere in the same order

25

Blockchain network
1

2

3

4

Block

Ordered list of
Transactions

Unordered set of
transactions

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Blockchain networks: tokens, transaction fees and mining rewards

• Tokens are used to a) pay for transaction processing (transaction fee) and b) to reward
validators for contributing hardware resources (compute, bandwidth, storage) to validate
transactions. They act as an incentive mechanism to keep validators honest.

26

Blockchain network

User must pay a transaction
fee to validators using tokens

User

Validators can earn additional tokens
by producing valid blocks

(a process called “mining” or “staking”)validator

Who can be a validator?

• In permissionless blockchains: anyone can join the network to become a transaction
validator. No need to ask for permission to anyone. Group membership is open.

• In permissioned blockchains: must receive permission from a coordinator or from existing
validators in order to become a transaction validator. Group membership is closed.

27

vs

Open Closed

Permissioned vs Permissionless networks: examples

• Examples of permissionless blockchain networks:

• Bitcoin (decentralized payments)

• Ethereum (decentralized computation)

• Filecoin (decentralized storage)

• Helium (decentralized wireless networks)

• Examples of permissioned blockchain networks:

• Hyperledger Fabric

• Corda

• Private Ethereum networks (“Enterprise Ethereum”)

• Hyperledger Sawtooth

28

Bitcoin

Filecoin

Ethereum

Helium

Consensus in Blockchain networks

29

Consensus in Blockchain networks: recap

• All validators must reach consensus on the exact same transaction history!

• Need to make sure that blocks get appended everywhere in the same order

30

Blockchain network
1

2

3

4

Block

Ordered list of
Transactions

Unordered set of
transactions

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Problem: diverging histories

• In an open system, if anyone can easily produce a valid block and add it directly to the ledger,
there is little hope that the network will end up agreeing on a single ledger

• More likely, we would end up with a quickly growing tree of blocks

• But we need all network nodes to agree on a single history!

31

Block
Tx Tx ...

Block
Tx Tx ...

Block
Tx Tx ...

Block
Tx Tx ...

31

Block
Tx Tx ...

Block
Tx Tx ...

Block
Tx Tx ...

How to get consensus: organize a vote?

• We can let the network vote to elect a single validator node to propose the next block

• Ideally the proposer node is chosen randomly to avoid any bias in the election process

• But how to organize a vote in an open and permissionless network?

• 1. We don’t even have a fixed list of nodes to organize a voting poll

• 2. Even if we would have a list of nodes, how to assign voting rights to each one?

• One IP address = one vote? Problem: attacker may control multiple IP addresses

• This is known as a sybil attack. The same problem holds for any other type of “identity” that
is cheap to create (e.g. public keys)

32

How to get consensus: organize a lottery!

• To elect a node from an open group of participants, organize a lottery: each node “buys”
tickets, whoever can “prove” they have the lucky ticket is the winner (and so gets to propose
the next block)

• The lottery should have the following properties:

• Fair - node election should be distributed across the broadest possible population of
participants (i.e. “everyone can buy a ticket”)

• Proportional - The cost of controlling the election process should be proportional to the
value gained from it (i.e. “the more tickets bought, the higher the chance of winning”)

• Verifiable - It should be relatively simple for all participants to verify that the winning node
was legitimately selected (i.e. “everyone can verify whether the winning ticket is indeed a
valid ticket”)

33

Lottery-based consensus in permissionless blockchains (“proof-of-X”)

• Validators enter the lottery by proving ownership of a digital or physically scarce resource

• Different blockchain networks may use different kinds of resources

34

“Proof-of-work”
(vote with compute power)

“Proof-of-stake”
(vote with staked tokens)

Example lottery-based consensus protocols:

=

=

Blockchain network

Lottery-based consensus in permissionless blockchains (“proof-of-X”)

• The integrity of the blockchain is guaranteed as long as a majority of the network, weighted
by their resource ownership, is controlled by well-behaved validators

35

Blockchain network

Honest (well-behaved) validator

Malicious validator (attacker)

Attacking a permissionless blockchain network: “51% attack”

• If an attacker (or group of attackers) controls >50% of the scarce resources, they
effectively control the production of new blocks.

• While such an attacker cannot create “fake” signed transactions (i.e. steal tokens), they can
reject (censor) any number of transactions and can approve transactions that double-spend
their own tokens by “forking” the blockchain and “rewriting” block history.

36

Blockchain network

Honest (well-behaved) validator

Malicious validator (attacker)

Proof-of-Work consensus

• Require blocks to contain a “proof-of-work”: a proof that significant (computational) work was
done to find the solution to a puzzle, where the solution - once known - is easy to verify

• The purpose is to slow down block production
• so that only one node at a time can propose a new block
• so that there is time to propagate the new block across the entire P2P network to avoid

disagreement on what is the latest valid block
• In Bitcoin: propose a new block on average every 10 minutes

37

Block
Tx Tx ...

Block
Tx Tx ...

Block
Tx Tx ...

Block
Tx Tx ...

Block
Tx Tx ...

Block
Tx Tx ...

Block
Tx Tx ...

Proof-of-Work in Bitcoin

• The proof-of-work involves searching for a value v
such that hash(v) is smaller than a given target
threshold value (known as the difficulty parameter)

• Because the output of a cryptographic hash cannot
be predicted, there is no known strategy better
than a brute force search

• The search is done by incrementing a number in
the block (the nonce) until a value is found such
that the block's hash satisfies the target difficulty

• The difficulty parameter is adjusted every 2016
blocks such that the average time between blocks
remains 10 minutes.

38

Find a nonce (a number) such that:

H (nonce || prev_hash || tx_root_hash) < target

Block
tx_root_hash nonceprev_hash

(source: Bitcoin wiki, retrieved November 2022)

https://en.bitcoin.it/wiki/Confirmation

How Proof-of-Work solves the consensus problem

• Nodes implicitly “vote” with their computational power

• Nodes silently accept a block by working on extending the block (= mining)

• Nodes silently reject a block by refusing to work on it

• The majority decision is represented by the longest chain, which has the greatest proof-of-work effort
invested in it.

39

Block
Tx Tx ...

Block
Tx Tx ...

Block
Tx Tx ...

Block
Tx Tx ...

Block
Tx Tx ...

How Proof-of-Work solves the consensus problem

• If a majority of compute power is controlled by honest nodes, the honest chain will grow the fastest and
outpace any competing chains.

• Put differently: an attacker must control more compute power than all the honest nodes combined in order
to outpace the “honest chain”

40

Block
Tx Tx ...

Block
Tx Tx ...

Block
Tx Tx ...

Block
Tx Tx ...

Block
Tx Tx ...

Proof-of-Work

• Miners “race” each other to find the next block. The
more computational power a miner has, the higher
the chance of winning the race.

• But Proof-of-Work is:

• Slow (by design)

• Energy-inefficient (by design)

• Subject to centralizing economies of scale (mining
pools, large-scale mining facilities)

41

A large-scale ASIC-based Bitcoin “mining farm”
(Image credit: stockhouse.com)

0

C

C1

Q Q 2

Average
cost ($)

Units produced
(hash-rate)

A small-scale GPU-based Bitcoin “mining rig”
(Image credit: investopedia.com)

Artisanal miner (low output,
relatively higher average costs)

Industrial miner (increasing
output leads to lower

average costs)

https://stockhouse.com
https://www.investopedia.com/tech/how-does-bitcoin-mining-work/

Proof-of-Stake

• Proof-of-Stake (PoS): the chance of proposing the next block is proportional to the
economic stake in the system.

• The more tokens “staked” (= locked in escrow), the higher the chance of
becoming the next block proposer.

• Many variations of PoS exist. Two large families include:

• Lottery-based Proof-of-Stake. Similar to Proof-of-Work. Also called chain-
based Proof-of-Stake.

• Voting-based Proof-of-Stake. Uses a BFT algorithm like PBFT or similar. Also
called BFT-based Proof-of-Stake.

42

Two families of voting-based consensus algorithms

• Crash fault-tolerant (CFT) consensus: assume participants may fail due to crashes or network
failures, but also assume all participants execute the consensus algorithm correctly and strictly
follow the same protocol.

• Tolerate up to (but not including) 1/2 participants failing by crashing (“fail-stop”)

• Example: Paxos (Lamport, 1989)

• Byzantine fault-tolerant (BFT) consensus: assume participants may fail due to crashes or
network failures, but make no additional assumptions. In particular, processes may incorrectly
execute the consensus algorithm and may deviate from the protocol in arbitrary ways.

• Tolerate up to (but not including) 1/3 processes failing in arbitrary ways

• Example: PBFT (Castro and Liskov, 1999)

43

PBFT in Permissionless blockchains: Tendermint
• Tendermint is an adaptation of PBFT to function as a consensus algorithm for a

permissionless blockchain without requiring Proof-of-Work mining

• It was one of the first attempts (~2014) to adapt classical (pre-blockchain) BFT algorithms such as
PBFT to support consensus in the context of a blockchain:

• Tendermint uses “Proof-of-Stake” to limit participation in the committee and to introduce
token incentives (rewards and penalties).

• Rather than seeking agreement on individual operations, peers take turns proposing the
next block in the chain. If a +⅔ quorum agrees on the block, it is added.

• Tendermint assumes a large, slow, wide-area network rather than a small, fast, local-area
network. Therefore, as in Bitcoin and Ethereum, peers use gossip communication.

• Tendermint supports dynamic group membership safely by requiring a +⅔ quorum of
validators to approve of membership changes. It is commonly used along with Proof-of-
Stake so that only peers that can prove ownership of staked tokens can participate.

• Tendermint supports slashing of staked tokens when validators are observed to deviate
from the protocol.

• Tendermint is used as the consensus algorithm in the Cosmos project and the Cosmos Hub
permissionless blockchain. The latest version is now known as “CometBFT”.

44

(Source: Lagaillardie, N.; Djari, M.A.; Gürcan, Ö. A Computational Study on Fairness
of the Tendermint Blockchain Protocol. Information 2019, 10, p. 378)

Proof-of-Stake consensus in Ethereum: Beacon Chain protocol
• Nodes have to stake minimum 32 ether into a deposit contract as collateral to become a

validator. Some or all of a validator’s stake can be destroyed if it is found to be dishonest.
Nodes thus have strong economic incentives to remain honest.

• Ethereum works with fixed time slots. In every time slot (spaced 12 seconds apart) a
validator is pseudorandomly selected to be the block proposer and another group of
nodes is pseudorandomly selected to form a committee (with a minimum size of 128).

• The chance to get elected as the block proposer is proportional to a validator’s staked
funds.

• The proposer bundles transactions, executes them and determines the new system state.
They wrap this information into a block and broadcast it to the committee.

• When validators in the committee receive the block, they re-execute the transactions to
ensure they reach the identical new system state. If they agree, they attest to the validity of
the block by signing it. A 2/3 majority weighted by stake is needed to finalize the block.

• Validators sign blocks using BLS signatures (for compact signature aggregation: only 96
bytes per aggregate signature)

• If a validator sees two conflicting blocks for the same slot they pick the one with the
greatest economic weight of block attestations (LMD-GHOST fork-choice rule).

45

(Image credit: Consensys. Source: consensys.net, February 2020)

https://consensys.net/blog/news/the-ethereum-2-0-beacon-chain-explained/

Consensus in Permissioned Blockchains

• Avoid the privacy and scalability challenges of
permissionless blockchains by limiting readers
and/or writers to a set of authorised parties
only

• This avoids the sybil attack problem and the
need to use “lottery”-based consensus (Proof-
of-Work, Proof-of-Stake, …)

• Instead, use standard “voting”-based
consensus algorithms such as PBFT

46

Permissioned vs Permissionless Blockchains: summary

47

Permissionless Permissioned
Network peers Validator nodes are pseudonymous. Validator node identity is usually revealed.

Peer membership Open (anyone can join, no need to ask “permission” to join) Closed (an administrator authorizes membership, or pre-
existing members vote to update the membership list)

Network size Scales to large number of peers (>1000 nodes) Usually small (< 100 nodes)

Network connectivity Low (not all peers may be able to connect to all other peers) High (often fully connected - all nodes can reach all other
nodes)

Consensus achieved via Lottery-based algorithms, based on proof of owning some
scarce resource (e.g. Proof-of-Work, Proof-of-Stake)

Voting-based algorithms, such as Byzantine Fault-tolerant
(BFT) consensus algorithms (e.g. PBFT)

Transaction throughput Low (~10 TPS for Bitcoin, Ethereum). Generally: the larger the
network, the lower the TPS.

High (10,000 or more TPS)
(TPS = transactions per second)

Transaction & Block finality Probabilistic & slow (blocks are considered final only after being
extended by enough newer blocks, which can take 10s of minutes)

Deterministic & fast (blocks are considered final as soon as 2/3
of validators accepted it, which may take < 1 second)

Safety threshold At least 50% of a scarce resource (compute power, staked
tokens) under the control of honest (correct) peers.

At least 2f + 1 honest (correct) peers for every f byzantine
peers (N - f = 2f+1). In other words, >2/3 or 67% honest.

Energy-efficiency Very low for Proof-of-Work. High for Proof-of-Stake. High (similar to standard replicated databases)

Final words about consensus algorithms
• Consensus protocols, like cryptographic protocols, are rife with implementation subtleties. Just like it is not

wise to invent your own cryptography protocol, it is usually not wise to invent your own consensus
algorithm.

• Before Blockchain (pre-2009) the focus of the academic community was almost exclusively on crash fault-
tolerant (CFT) consensus among a closed group of processes.

• The PBFT algorithm (1999) was a milestone in achieving byzantine fault-tolerant (BFT) consensus in real-
world networks, but also still assumed a closed group of processes.

• With the advent of Blockchain (post-2009), the focus has shifted to study BFT consensus in an open and
adversarial environment (there is no a-priori closed group of processes).

• Today the state-of-the-art are DAG-based consensus algorithms

• DAG-Rider: All You Need Is DAG (PODC 2021). [I. Keidar, E. Kokoris-Kogias, O. Naor, A. Spiegelman]

• Narwhal & Tusk (EuroSys 2022) [G. Danezis, E. Kokoris-Kogias, A. Sonnino, A. Spiegelman]

• Bullshark (CCS 2022) [A. Spiegelman, N. Giridharan, A. Sonnino, E. Kokoris-Kogias]

48

(Source: Sui / Mysten Labs, 2024)

Sui Mysticeti: 100.000 tps at
<1sec finality (paper)

https://arxiv.org/pdf/2310.14821

Blockchains as trusted computers: smart contracts and Ethereum

49

Physical view: a blockchain is a peer-to-peer network of computers

Many independent validators / miners

Blockchain networkWallet

T

Transaction

User(s) T

Signed
Transaction

Logical view: a blockchain is a transaction processing machine

T

Wallet

T

Transaction

User(s)

Bitcoin

T0

S0 S1

T1

S2

transfer 2 coins
to Bob

signed, Alice

IF Alice’s signature is correct	
AND she has at least 2 coins	
THEN transfer the coins to Bob

Ethereum’s innovation: make the transactions programmable!

T

Wallet

T

Transaction

User(s)

transfer 2 coins
to Bob’s program

signed, Alice

T0

S0 S1

T1

S2

Bob’s program

Ethereum’s innovation: make the transactions programmable!

T

Wallet

T

Transaction

User(s)

transfer 2 coins
to Bob’s program

signed, Alice

T0

S0 S1

T1

S2

IF at least ${amount} coins	
 were deposited before ${date}	
THEN transfer all stored coins to Bob	
ELSE refund all stored coins

Example: a basic crowdfunding contract

Bob’s program

Blockchains as trusted virtual computers

54

T0

S0 S1

T1

S2

Bob’s program

consensus

T0

S0 S1

Many (1000s) untrustworthy physical computers

One single virtual computer
with strong trust guarantees

Smart contracts: basic principle

• A vending machine is an automaton that can trade physical assets

55

1. insert coins

2. dispense drink

Smart contracts: basic principle

• A smart contract is an automaton that can trade digital assets

56

1. insert digital coins (tokens)

2. dispense other digital assets
or electronic rights

code

But who should we trust to faithfully execute the automaton’s code?

• A smart contract is an automaton that can trade digital assets

57

1. insert digital coins (tokens)

2. dispense other digital assets
or electronic rights

code

Delegate trust to a decentralised network (= blockchain!)

• A smart contract is a replicated automaton that can trade digital assets

58

1. insert digital coins (tokens)

2. dispense other digital assets
or electronic rights

replicated code

Contracts are compiled into bytecode for a simple stack machine

59

solidity source code

.sol

Solidity compiler

Ethereum Virtual Machine

EVM bytecode

Bob’s contract

network of validator nodes

60

• Can we model a crowdfunding campaign as an automaton?

Example: crowdfunding as a smart contract

1. Backers deposit tokens (pledge support)

3a. Either the backers withdraw their share…

crowdfunding contract

2. Wait until deadline to see if the goal was met

3b. or the beneficiary withdraws the full deposit

Example: crowdfunding as a smart contract

61

Owner
(the beneficiary of the crowdfunding action)

Crowdfunding
contract

Backers
(the parties that donate funds)

1. Setup
Step 1: the owner creates the contract,

stating target amount + funding deadline
(which cannot be changed afterwards)

Step 2: backers can donate money
(deposit funds into the contract)

IF the funding deadline has not yet passed

Step 3a (crowdfunding successful):
the owner can claim the funds

(withdraw funds from the contract)
IF the funding deadline has passed AND

the minimum target amount has been met

Step 3b (crowdfunding failed):
backers can reclaim their donations
(withdraw funds from the contract)

IF the funding deadline has passed AND
the minimum target amount has not been met

2. Accepting
donations

3b. Crowdfund
failed

3a. Crowdfund
success

deadline passed AND
amount reached

deadline passed AND
amount not reached

Crowdfunding contract: Solidity source code

62

contract Crowdfunding {	

 address public owner; // the beneficiary address	
 uint256 public deadline; // campaign deadline in number of days	
 uint256 public goal; // funding goal in ether	
 mapping (address => uint256) public backers; // the share of each backer	

 constructor(uint256 numberOfDays, uint256 _goal) {	
 owner = msg.sender;	
 deadline = block.timestamp + (numberOfDays * 1 days);	
 goal = _goal; 	

 }	
 function donate() public payable {	
 require(block.timestamp < deadline); // before the fundraising deadline	
 backers[msg.sender] += msg.value; 	

 } 	

 function claimFunds() public {	
 require(address(this).balance >= goal); // funding goal met	
 require(block.timestamp >= deadline); // after the withdrawal period	
 require(msg.sender == owner); 	
 payable(msg.sender).transfer(address(this).balance);	
 } 	
 function getRefund() public {	
 require(address(this).balance < goal); // campaign failed: goal not met 	
 require(block.timestamp >= deadline); // in the withdrawal period 	
 uint256 donation = backers[msg.sender];	
 backers[msg.sender] = 0;	
 payable(msg.sender).transfer(donation); 	
 }	
}

.sol

(Based on: Ilya Sergey, “The next 700 smart contract
languages”, Principles of Blockchain Systems 2021)

Crowdfunding contract: Solidity source code

63

contract Crowdfunding {	

 address public owner; // the beneficiary address	
 uint256 public deadline; // campaign deadline in number of days	
 uint256 public goal; // funding goal in ether	
 mapping (address => uint256) public backers; // the share of each backer	

 constructor(uint256 numberOfDays, uint256 _goal) {	
 owner = msg.sender;	
 deadline = block.timestamp + (numberOfDays * 1 days);	
 goal = _goal; 	

 }	
 function donate() public payable {	
 require(block.timestamp < deadline); // before the fundraising deadline	
 backers[msg.sender] += msg.value; 	

 } 	

 function claimFunds() public {	
 require(address(this).balance >= goal); // funding goal met	
 require(block.timestamp >= deadline); // after the withdrawal period	
 require(msg.sender == owner); 	
 payable(msg.sender).transfer(address(this).balance);	
 } 	
 function getRefund() public {	
 require(address(this).balance < goal); // campaign failed: goal not met 	
 require(block.timestamp >= deadline); // in the withdrawal period 	
 uint256 donation = backers[msg.sender];	
 backers[msg.sender] = 0;	
 payable(msg.sender).transfer(donation); 	
 }	
}

Declare a contract.

Similar to a class in OOP, a
contract can have state
(variables) and behaviour
(functions)

Crowdfunding contract: Solidity source code

64

contract Crowdfunding {	

 address public owner; // the beneficiary address	
 uint256 public deadline; // campaign deadline in number of days	
 uint256 public goal; // funding goal in ether	
 mapping (address => uint256) public backers; // the share of each backer	

 constructor(uint256 numberOfDays, uint256 _goal) {	
 owner = msg.sender;	
 deadline = block.timestamp + (numberOfDays * 1 days);	
 goal = _goal; 	

 }	
 function donate() public payable {	
 require(block.timestamp < deadline); // before the fundraising deadline	
 backers[msg.sender] += msg.value; 	

 } 	

 function claimFunds() public {	
 require(address(this).balance >= goal); // funding goal met	
 require(block.timestamp >= deadline); // after the withdrawal period	
 require(msg.sender == owner); 	
 payable(msg.sender).transfer(address(this).balance);	
 } 	
 function getRefund() public {	
 require(address(this).balance < goal); // campaign failed: goal not met 	
 require(block.timestamp >= deadline); // in the withdrawal period 	
 uint256 donation = backers[msg.sender];	
 backers[msg.sender] = 0;	
 payable(msg.sender).transfer(donation); 	
 }	
}

All contract state is
replicated and publicly
persisted on the
blockchain.

Crowdfunding contract: Solidity source code

65

contract Crowdfunding {	

 address public owner; // the beneficiary address	
 uint256 public deadline; // campaign deadline in number of days	
 uint256 public goal; // funding goal in ether	
 mapping (address => uint256) public backers; // the share of each backer	

 constructor(uint256 numberOfDays, uint256 _goal) {	
 owner = msg.sender;	
 deadline = block.timestamp + (numberOfDays * 1 days);	
 goal = _goal; 	

 }	
 function donate() public payable {	
 require(block.timestamp < deadline); // before the fundraising deadline	
 backers[msg.sender] += msg.value; 	

 } 	

 function claimFunds() public {	
 require(address(this).balance >= goal); // funding goal met	
 require(block.timestamp >= deadline); // after the withdrawal period	
 require(msg.sender == owner); 	
 payable(msg.sender).transfer(address(this).balance);	
 } 	
 function getRefund() public {	
 require(address(this).balance < goal); // campaign failed: goal not met 	
 require(block.timestamp >= deadline); // in the withdrawal period 	
 uint256 donation = backers[msg.sender];	
 backers[msg.sender] = 0;	
 payable(msg.sender).transfer(donation); 	
 }	
}

Owner
(the beneficiary of the crowdfunding action)

Crowdfunding
contract

Backers
(the parties that donate funds)

constructor()	
claimFunds()

donate()	
getRefund()

Crowdfunding contract: Solidity source code

66

contract Crowdfunding {	

 address public owner; // the beneficiary address	
 uint256 public deadline; // campaign deadline in number of days	
 uint256 public goal; // funding goal in ether	
 mapping (address => uint256) public backers; // the share of each backer	

 constructor(uint256 numberOfDays, uint256 _goal) {	
 owner = msg.sender;	
 deadline = block.timestamp + (numberOfDays * 1 days);	
 goal = _goal; 	

 }	
 function donate() public payable {	
 require(block.timestamp < deadline); // before the fundraising deadline	
 backers[msg.sender] += msg.value; 	

 } 	

 function claimFunds() public {	
 require(address(this).balance >= goal); // funding goal met	
 require(block.timestamp >= deadline); // after the withdrawal period	
 require(msg.sender == owner); 	
 payable(msg.sender).transfer(address(this).balance);	
 } 	
 function getRefund() public {	
 require(address(this).balance < goal); // campaign failed: goal not met 	
 require(block.timestamp >= deadline); // in the withdrawal period 	
 uint256 donation = backers[msg.sender];	
 backers[msg.sender] = 0;	
 payable(msg.sender).transfer(donation); 	
 }	
}

Instructions to deposit and
withdraw money (ether)

Decentralized Applications (Dapps)

67

Decentralized applications: what and why?

• Decentralized applications (dapps) are web applications backed by smart
contracts

• To achieve transparency (publish the core application logic on a
blockchain, immutable and verifiable by anyone)

• To resist censorship (avoid a single point of control)

• To improve reliability (avoid a single point of failure)

68

Decentralized applications: examples

69

Decentralized prediction
markets & betting platforms

Decentralized autonomous
organizations (DAOs)

Decentralized
crowd-funding“Play-to-earn” games

Decentralized exchanges
Atomic token swaps

Decentralized lending
and borrowing protocol

Traditional Web application architecture

• Following a standard “3-tier” architecture:

• Front-end: code that runs in the browser (or on a
mobile app), mostly UI logic

• Back-end: code that runs on a web server, focus
on business logic

• Database: persists the application state

• It is common for the application to define the user’s
identity and to store username and password in the
database. The user does not control their identity.

70

(Source: P. Kasireddy, “The Architecture of a Web 3.0 application”, Medium.com:
https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application)

https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application

Decentralized Web application architecture

71

• Front-end: largely unchanged (mostly UI logic)

• Back-end: (part of) the application logic is implemented as a
smart contract and published on the blockchain

• Database? The state of the smart contract is persisted on
the blockchain (replicated across all validator nodes)

• Node-as-a-Service Provider: offers a REST API to relay
requests from browsers or mobile apps to peers in the
blockchain network.

• Signer: for any user action that results in an update to the
smart contract, a signature is needed from the user. This
task typically delegated to a wallet that securely stores the
user’s keys. The user retains control over their keys (they
are not stored or controlled by the application).

(Source: P. Kasireddy, “The Architecture of a Web 3.0 application”, Medium.com:
https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application)

https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application

Common Dapp “dev stack” options

72

• Front-end libraries

• Frameworks

• Node Providers

• Signers

web3.js

(Source: P. Kasireddy, “The Architecture of a Web 3.0 application”, Medium.com:
https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application)

https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application

Ethereum has challenges

• Can be expensive to use (> $10 in
transaction fees is not uncommon)

• Slow (~10-14 transactions per second)

• Bugs in contracts can be fatal

1 https://ethereum.org/en/developers/docs/scaling

“Layer 2” scaling solutions (a.k.a. “rollups”)

• Key idea: batch many “Layer 2” (L2)
transactions into a single combined
transaction stored on “Layer 1” (L1)

• Offer a way for anyone to verify that the
batch of L2 transactions was correctly
executed

• “fraud proofs” => optimistic rollups

• “zero-knowledge proofs” => zk-rollups
(Source: Chainlink)

“Layer 2” scaling solutions: landscape

“Layer 2” scaling solutions: benefits

• Lower transaction fees (< $0.01 / tx)

• Higher transaction throughput
(100-1000 tps at ~13min finality)

(Source: L2Beat)

(Source: l2fees.info)

http://l2fees.info

Conclusion

77

Blockchain: hot topics & open challenges

78

Problem Solution Examples
Lack of Privacy: can’t store secrets on a
blockchain Zero-knowledge Proofs ZCash, Privacy Pools, StarkNet, …

Poor scalability: “secure, scalable,
decentralized: choose two”

Layer-2 rollups, AppChains, Payment
channels Cosmos, Arbitrum, Optimism, Lightning, …

Security vulnerabilities in smart contracts Use safer languages and abstractions Rust (Solana, ICP, NEAR, …), Move (Sui,
Aptos), …

(Mobile/Web) clients must trust servers to
access the blockchain

Stateless “light clients”, compact inclusion
proofs, decentralized RPC protocols, …

Verkle trees, Mina protocol, Celestia, Portal
network, …

Siloes: assets stored on one blockchain
cannot be used on another

Cross-chain “bridges”, atomic swaps
(hashed time-locked contracts), …

Inter-blockchain Communication (IBC)
protocol, Wormhole, …

Oracles: how to get trustworthy, reliable
access to off-chain data? Decentralized Oracle Networks (DONs) Chainlink, …

Recap: course topics

• The origins of Blockchain
• What are the cryptographic building blocks of a blockchain?
• How does a blockchain process transactions? Life of a blockchain transaction.
• Consensus in blockchain networks: Proof-of-Work, Proof-of-Stake, BFT Consensus
• Permissioned versus Permissionless blockchain networks
• Blockchains as trusted computers: smart contracts and Ethereum
• Building decentralized applications using blockchains

79

Further reading - good introductory resources on Blockchain

• Narayanan et al. “Bitcoin and Cryptocurrency Technologies”
Princeton University Press, 2016 - preprint available for free
online at: https://bitcoinbook.cs.princeton.edu/

• Roger Wattenhofer (ETH Zurich), “Blockchain Science”, 2019

• Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash
System” a.k.a. the “Bitcoin whitepaper” (2008)

• Recommended: an annotated online version with helpful
notes & clarifications (D. Hogg, 2021): https://
blog.infocruncher.com/2021/10/31/bitcoin-whitepaper-
annotated/

80

https://bitcoinbook.cs.princeton.edu/
https://blog.infocruncher.com/2021/10/31/bitcoin-whitepaper-annotated/
https://blog.infocruncher.com/2021/10/31/bitcoin-whitepaper-annotated/
https://blog.infocruncher.com/2021/10/31/bitcoin-whitepaper-annotated/

Further reading - good introductory resources on Ethereum

• Ethereum official project website: https://ethereum.org/

• Ethereum whitepaper: https://ethereum.org/en/whitepaper/

• Etherscan block explorer: https://etherscan.io/

• Remix, an online IDE and playground for Solidity: https://remix.ethereum.org/

• Solidity by Example: https://solidity-by-example.org/

• OpenZeppelin reusable contracts: https://www.openzeppelin.com/contracts

• Awesome-Ethereum: https://github.com/ttumiel/Awesome-Ethereum

81

https://ethereum.org/
https://ethereum.org/en/whitepaper/
https://etherscan.io/
https://remix.ethereum.org/
https://solidity-by-example.org/
https://www.openzeppelin.com/contracts
https://github.com/ttumiel/Awesome-Ethereum

Work Projects

82

Work projects

• Project 1: build an end-to-end decentralized application on Ethereum
• Project 2: perform a comparative study of consensus protocols for blockchains

83

Project 1: build a decentralized application on Ethereum

• Pick your own application use case, or elaborate on the Crowdfunding example
• Components to build:

• Front-end (website UI, wallet integration)
• Back-end (web-server, gateway to blockchain)
• Smart contract (Solidity program, deployed on a test-network)

• Things to consider:
• Development: use a developer framework like Hardhat
• Testing: write unit tests to test the important interactions
• Static analysis: use a static analysis tool for Solidity to find bugs
• Stretch goal: look into formal verification of key safety / liveness properties

84

Project 2: comparative study of consensus protocols for blockchains

• Compare the consensus protocols of 5 real-world blockchains (2 classic, 3 modern):
• Bitcoin’s original Proof-of-Work based protocol
• Ethereum’s modern Proof-of-Stake based protocol
• Solana’s Proof-of-History based protocol
• Internet Computer’s ICC consensus protocol
• Sui’s Mysticeti protocol

• Focus on:
• History, origins
• Performance (throughput, latency)
• Scalability in terms of network size
• Security thresholds (safety, liveness)

85

Blockchain and Distributed Ledgers
Tom Van Cutsem

DistriNet, KU Leuven

Questions?
tom.vancutsem@kuleuven.be

@tvcutsem.bsky.socialgithub.com/tvcutsemtvcutsem.github.io be.linkedin.com/in/tomvc @tvcutsem@techhub.social

mailto:tom.vancutsem@kuleuven.be
https://tvcutsem.github.io
https://techhub.social/@tvcutsem
https://bsky.app/profile/tvcutsem.bsky.social
https://be.linkedin.com/in/tomvc
https://github.com/tvcutsem

