KU LEUVEN

Blockchain and Distributed Ledgers

Tom Van Cutsem
DistriNet, KU Leuven

DARE Summer School September 8-12, 2025

tvcutsem.github.io be.linkedin.com/in/tomvc github.com/tvcutsem @tvcutsem.bsky.social @tvcutsem@techhub.social

https://github.com/tvcutsem
https://be.linkedin.com/in/tomvc
https://bsky.app/profile/tvcutsem.bsky.social
https://techhub.social/@tvcutsem
https://tvcutsem.github.io

The origins of Blockchain

What are the cryptographic building blocks of a blockchain®?

How does a blockchain process transactions”? Life of a blockchain transaction.

Consensus in blockchain networks: Proof-of-Work, Proof-of-Stake, BFT Consensus

Permissioned versus Permissionless blockchain networks

Slockchains as trusted computers: smart contracts and Ethereum

Building decentralized applications using blockchains

Conclusion and latest trends

2 B DistriN=t

Blockchain: origins

3 B DistriN=t

Electronic cash

- Since the dawn of the Internet, cryptographers have tried to create digital
currencies that are more similar to physical cash or coins

- Money as a “bearer instrument” token: whoever holds the token can spend it
- Payments are anonymous and untraceable

+ Example: e-cash (Digicash)

RE UNTRACEABLE YME

Department of Computer Science

Santa Barbara, Ca
i

he way we pay for goods and services is already AL“M“\
nderway een by the variety and growth of electronic
banking services a labl O consumers. 'he timate structure of
the new electronic payments system may have a substantial impact on '
personal privacy as well as on the nature and extent of criminal use ,zzl\vll(:j < ;t‘]é;llvji I I
of payments. Ideally a new payments system should address both of
these seemingly conflicting sets of concerns. . . c
4 lectronic cash (1982) B DistriN=t

The problem with electronic cash: the Double Spending Problem

Transaction

| hereby transfer

1 digicoin to Bob | hereby transfer
A‘ iCe x DN / 1 digicoin J[O;Ob 8 BO b

signed, Alice

signed, Alice

5 B DistriN=t

The problem with electronic cash: the Double Spending Problem

eA\ice

Transaction

| hereby transfer
1 digicoin to Bob

%

signed, Alice

| hereby transfer
1 digicoin to Bob

signed, Alice

Transaction

| hereby transfer
1 digicoin to Carol

2

signed, Alice

| hereby transfer
1 digicoin to Carol

signed, Alice

B DistriN=t

The problem with electronic cash: the Double Spending Problem

Transaction

| hereby transfer

' 1 dIgICOIﬂ to Bob | hereby transfer
A‘ ICe 1 digicoin to Bob

signed, Alice signed, Alice

Transaction

i E | hereby transfer
| hereby transfer 1 digicoin to Carol
1 digicoin to Carol x

2

signed, Alice

signed, Alice

How can Bob and Carol be sure they are now the sole owner of Alice’s coin”
7 B DistriN=t

Straightforward solution: use a central clearing house

- The clearing house does the accounting of what tokens have

already been spent. This avoids “double spending” the
same token.

- The payments themselves can still be anonymous! \We just

need to record spent tokens. Privacy risks partially mitigated
using blind signatures.

+ Problem: everyone depends on the clearing house. Risks:

- Technical risks: availability (what if the clearing house is
unavailable?) and security (what if the clearing house gets
attacked? This may include insider threats!)

- Economic and political risks: what if the company
running the clearing house goes bankrupt or is threatened
in court? (E.g. Digicash actually went bankrupt in 1998)

.

clearing
house

~

B

J

o

0

B DistriN=t

Blockchain networks

Sitcoin’s breakthrough idea: rather t
everyone collectively do the accoun

nan having a single party record who owns what, let
Ing of who owns what

Store account balances in an append-only replicated database called a blockchain

é)

clearing

house
_)

r N

clearing

house
_)

Fully decentralised
payment network

[)

clearing

house
_ W,

~\

.
clearing

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com
www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing chain of
hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
events witnessed, but proof that it came from the largest pool of CPU power. As
long as a majority of CPU power is controlled by nodes that are not cooperating to
attack the network, they'll generate the longest chain and outpace attackers. The
network itself requires minimal structure. Messages are broadcast on a best effort
basis, and nodes can leave and rejoin the network at will, accepting the longest
proof-of-work chain as proof of what happened while they were gone.

house
_ W,

The “Bitcoin whitepaper”
by “Satoshi Nakamoto”, 2009

B DistriN=t

Replace central clearing house by a public, replicated, append-only,
tamper-resistant ledger

Validator nodes group transactions in “blocks”, “chained” together into a
linear sequence using cryptographic hashes, secured using “Proof of Work”™

Transaction

| hereby transfer
1 bitcoin to Bob

%

signed, Alice

Block n

H(n-1)

hash

10

Block n+1

H(n)

TX

B DistriN=t

What are the cryptographic building blocks of a blockchain

B DistriN=t

How cryptography Is used to securely record transactions on a blockchain

o--»@o--

Public key Alice Private key

Alice pays Bob $10 [exaazre..

< B Alice pays Bob $10
Signature

Bl Bob pays Carol $100 Transaction

B Carol pays Alice $10

Bl The network pays Victor $1
Block cryptographic hash H(x)

Bl Bob pays Dave $50
B Alice pays Carol $25

Ox4B0O3721...
Hash

Block chain

12 B DistriN=t

Common cryptographic algorithms used in blockchain systems

Cryptographic hashes

SHA-256 or KECCAK-256

Secure hash algorithm

arbitrary-length input string || nonce

cryptographic hash H(x)

250-bit hash

Desirable properties:

¢ H is collision-resistant
e H hides its input x

e His “puzzle-friendly”

13

Digital signatures

ECDSA (secp256k1 curve)

Elliptic curve digital signature algorithm

generateKeys

P

P

512-bit public key

256-bit private key

M

512-bit sig

Desirable properties:

£

¢ \alid signatures must verify
e Signatures are unforgeable
e Signature is unique to M

B DistriN=t

Common cryptographic algorithms used in blockchain systems

Hash pointers

Block n-1

Ix TX

“hash pointer”

The hash is used both as:

¢ a unique identifier (to identify and lookup the data)
¢ a digest (to verify that the data has not been tampered with)

Any non-cyclical data structure can be built from hash pointers

14

B DistriN=t

Common cryptographic algorithms used in blockchain systems

Why use hash pointers®

Blockn-7 -+

Block n

TX

Ix TX

“hash pointer”

¢ \\le want the transaction log history to be immutable (i.e. only append new transaction, not edit past transactions).
¢ By using hash pointers, we ensure that modifying any data in any past block would invalidate the hash pointers of all

the following blocks.

¢ [his makes it immediately clear to anyone with a historical copy of the blockchain that data has been tampered with.
* [his makes the transaction log “tamper-evident”.

15

B DistriN=t

Merkle Trees (a.k.a. Binary hash trees)

Invented by cryptographer Ralph Merkle
N 1979

Goal: efficiently verify that a piece of
data is included in a list of data blocks

Leaf nodes are labelled with
cryptographic hash of a single data
element

Branch nodes are labelled with
cryptographic hash of the concatenation
of the labels of Iits children

16

aa8d3

Keccak
(96b8dct54b)

96b8d

cf54b

Keccak

(dd8e58e290)

dd8eb

Keccak

e2ad0184da

8e290

Keccak

40b7f1 Z;\

e2ad0

184da

9d40b

71134

Keccak
Data1

(Image credit: T. Kanstrén, Merkle Tre

Keccak
Data2

Keccak Keccak
Data3) (Data4)

s: Concepts and Use Cases,

medium.com)

B DistriN=t

https://medium.com/coinmonks/merkle-trees-concepts-and-use-cases-5da873702318

Merkle Trees: cryptographic commitment

Changing a single data item would
change the leaf hash, and

consequently all intermediate hash /m\
values up to the root hash

9b785 cfd4b
ooz
The root node hash thus ddges scszd\ cf5db
' Jrczasianaa dsomrs 1
represe{_nts al_i:ry_ﬁfogratphlc‘: 't f e2ad0 184da 9d40b 75131 cfd4b
COIMIMIMENT IO e SIS ISt O S
data items \d/] [_/] \d/] v]

(Image credit: T. Kanstrén, Merkle Trees: Concepts and Use Cases, medium.com)

17 B DistriN=t

https://medium.com/coinmonks/merkle-trees-concepts-and-use-cases-5da873702318

Merkle Trees support efficient inclusion proofs

Goal: prove that a data item is part of

the original list (e.g. Data3) [=Moo Pt o Dt

I:I = recomputed from Merkle Path

Only need the hash values of the sebaaeisa
branches along the data item’s path oo | | oo |

(dd8e58e290)

dd8eb

O(log(n)) steps, where n is the number flmian,
of data items (leaves) 200 || 184aa

S R R B~ I =
) D) O
How many steps would have been H H H M

needed If we would have just stored
the hash of the list of data items”/

cf54b

(Image credit: T. Kanstrén, Merkle Trees: Concepts and Use Cases, medium.com)

18 B DistriN=t

https://medium.com/coinmonks/merkle-trees-concepts-and-use-cases-5da873702318

Merkle trees In the Bitcoin blockchain

- An actual Bitcoin block consists of a Block Header and a transaction list
stored separately as a Merkle Tree

- The block header contains the root hash of the Merkle Tree Block T Block Header (Block Hash)
» Prev Hash Nonce >
- This enables clients to efficiently verify that a transaction was included in
a block without downloading the full transaction information in each Root Hash
block (“SPV” or “Simplified Payment Verification”): / \
HashO1 Hash23
- Assume client has information on a transaction to verify, includingits 4 » 4 »
associated Merkle Path -~~~

Hash0 Hash1 Hash2 Hash3
1. Client queries the Bitcoin network for block headers included in ? ? T f
the longest chain

Tx0 Tx1 Tx2 Tx3

- 2. Client can recompute Merkle root hash from transaction Transactions Hashed in a Merkle Tree
information and Merkle Path

(Source: S. Nakamoto, 2008, “Bitcoin: A Peer-to-Peer Electronic Cash System”)

- 3. Client can verify that its computed root hash is part of a block
header in the longest chain

19 B DistriN=t

How does a blockchain network process transactions”?

A.Kk.a. the “life of a blockchain transaction”

20 B DistriN=t

Step 1: clients submit signed transactions

Clients concurrently submit signed transactions to one or more validators.

client

Example transactions...

. = “send x bitcoin to address a”

é = “call function f on contract
. a with input x”
e . = “please store these bytes”

21 IS DistriN=t

Step 2: validators validate and gossip transactions

A validator is a network node that maintains an unordered set (“mempool”) of iIncoming
transactions. It collects, validates and broadcasts transactions to other peers (Using a gossip
broadcast protocol)

Unordered set of
transactions

22 IS DistriN=t

validator

Step 3: a validator produces a block of transactions

At regular intervals, a subset of validators pick a subset of transactions from the pool and
sequence them, thus producing an ordered list of transactions. These validators are
sometimes called “miners” or “staking validators”. 1he transaction list is called a "block™

] -] Unordered set of
B transactions

AN

Ordered list of
Transactions

staking validator Block
23 BRI DistriN=t

Step 4: validators gossip block and append to the blockchain

The block is broadcast to all validators (aga

all transactions in the block are valid. If yes, tr
log (aka the blockchain).

ey append t

IN UsSiNg goss|

D).

—ach validator checks again it

ne block to their local transaction

[] m -] Unordered set of
- B transactions

AN

Ordered list of
Transactions

Block
B DistriN=t

Cconsensus

All validators must reach consensus on the exact same transaction history!

Need to make sure that blocks get appended everywhere in the same order

] Unordered set of
B transactions

AN

Ordered list of
Transactions

“

Block

IS DistriN=t

Blockchain networks: tokens, transaction fees and mining rewards

Tokens are used to a) pay for transaction processing (transaction fee) and b) to reward
validators for contributing hardware resources (compute, bandwidth, storage) to validate
transactions. They act as an incentive mechanism to keep validators honest.

User

®

l . = Blockchain network

User must pay a transaction
fee to validators using tokens

Validators can earn additional tokens
by producing valid blocks
(a process called “mining” or “staking”)

EEN l:l
V
&
-
|7|
%
o
EI:I (@
V

validator

26 B DistriN=t

INn permissionless blockch

ains: anyone can join the

validator, No need to ask fo

permission to a

nyone. G

Networ

K t0 become a transaction

oup

embership is open.

In permissioned blockchains: must receive permission from a coordinator or from
validators in order to become a transaction validator. Group membership is closed.

VS

27

Closed

existing

IS DistriN=t

Permissioned vs Permissionless networks: examples

—xamples of permissionless blockchain networks:

Bitcoin (decentralized payments)

—thereum (decentralized computation)
Filecoin (decentralized storage)

Helium (decentralized wireless networks)

—xamples of permissioned blockchain networks:
Hyperledger Fabric
Corda

Private Ethereum networks (“Enterprise Ethereum”)

Hyperledger Sawtooth

28

Sitcoin —thereum
€) Fiecoin Helium

~ v« HYPERLEDGER

Ziere corda

ENTERPRISE HYPERLEDGER
ETHEREUM w

ALLIANCE

4
\4

B DistriN=t

Consensus In Blockchain networks

29 B DistriN=t

Consensus In Blockchain networks: recap

All validators must reach consensus on the exact same transaction history!

Need to make sure that blocks get appended everywhere in the same order

6

] Unordered set of
B transactions

AN

Ordered list of
Transactions

Block

IS DistriN=t

Problem: diverging histories

In an open system, If anyone can easily produce a valid block and add it directly to the ledger,
there is little hope that the network will end up agreeing on a single ledger

More likely, we would end up with a quickly growing tree of blocks

Sut we need all network nodes to agree on a single history!

V'

., | Block
‘.‘ -

31 B DistriN=t

We can let the network vote to elect a single validator node to propose the next block

|deally the proposer node is chosen randomly to avoid any bias in the election process

Sut how to organize a vote in an open and permissionless network”?

1. We don’t even have a fixed list of nodes to organize a voting poll

2. BEven if we would have a list of nodes, how to assign voting rights to each one”

One |IP address = one vote”? Problem: attacker may control multiple I[P addresses

This is known as a sybil attack. The same problem holds for any other type of “identity” that
IS cheap to create (e.q. public keys)

32 IS DistriN=t

To elect a node from an open group of participants, organize a lottery: each node “buys”
tickets, whoever can “prove” they have the lucky ticket is the winner (and so gets to propose
the next block)

he lottery should have the following properties:

Fair - node election should be distributed across the broadest possible population of
participants (i.e. “everyone can buy a ticket”)

Proportional - The cost of controlling the election process should be proportional to the
value gained from it (i.e. “the more tickets bought, the higher the chance of winning”)

Verifiable - It should be relatively simple for all participants to verity that the winning node
was legitimately selected (i.e. “everyone can verify whether the winning ticket is indeed a
valid ticket”)

33 IS DistriN=t

| ottery-based consensus in permissionless blockchains (“proof-of-X”)

Validators enter the lottery by proving ownership of a digital or physically scarce resource

Different blockchain networks may use different kinds of resources

Example lottery-based consensus protocols:

- “Proof-of-work™
Blockehain network (vote with compute power) . = f

“Proof-of-stake”
(vote with staked tokens)

34 B DistriN=t

| ottery-based consensus in permissionless blockchains (“proof-of-X”)

The Integrity of the blockchain is guaranteed as long as a majority of the network, weighted
by their resource ownership, is controlled by well-behaved validators

Blockchain network

Malicious validator (attacker)

@ onest (well-behaved) validator

35 B DistriN=t

Attacking a permissionless blockchain network: “51% attack”

If an attacker (or group of attackers) controls >50% of the scarce resources, they
effectively control the production of new blocks.

While such an attacker cannot create “fake” signed transactions (i.e. steal tokens), they can

reject (censor) any num
thelr own tokens by “for

pber of transactions and can approve transactions that double-spend

KINg” the blockchain and “rewriting” block history.

Blockchain network

Malicious validator (attacker)

@ onest (well-behaved) validator

36 B DistriN=t

Proof-of-Work consensus

Require blocks to contain a “proof-of-work™: a proof that significant (computational) work was
done to find the solution to a puzzle, where the solution - once known - Iis easy to verify

The purpose is to slow down block production

so that only one node at a time can propose a new block

so that there is time to propagate the new block across the entire P2P network to avoid
disagreement on what is the latest valid block

In Bitcoin: propose a new block on average every 10 minutes

“ Block

TX TX

Block
Tx Tx

®

B DistriN=t

TX

FProof-of-Work In Bitcoin

The proof-of-work involves searching for a value v Find a nonce (a number) such that:
such that hash(v) is smaller than a given target

threshold value (known as the difficulty parameter) H (nonce || prev_hash || tx_root_hash) < target
Secause the output of a cryptographic hash cannot =

be predicted, there iIs no known strategy better . e
than a brute force searcr . —

The search is done by incrementing a numlber ir s botusnocis
the block (the nonce) until a value is found such I
that the block's hash satisfies the target difficulty

The difficulty parameter is adjusted every 2016
blocks such that the average time between blocks
remains 10 minutes.

(source: Bitcoin wiki, retrieved November 2022)

38 B DistriN=t

https://en.bitcoin.it/wiki/Confirmation

How Proof-of-Work solves the consensus problem

 Nodes implicitly “vote” with their computational power

* Nodes silently accept a block by working on extending the block (= mining)

* Nodes silently reject a block by refusing to work on it

* [he majority decision is represented by the longest chain, which has the greatest proof-of-work eftort

iInvested In It.

Block ' Block
Tx || Tx e o Tx || Tx

Block

39 B DistriN=t

How Proof-of-Work solves the consensus problem

* |f a majority of compute power is controlled by honest nodes, the honest chain will grow the fastest and

outpace any competing chains.

* Put differently: an attacker must control more compute power than all the honest nodes combined in order

to outpace the “honest chain”

Block

TX

Block

TX

Tx

&/

B DistriN=t

FProof-of-Work

Miners “race” each other to find the next block. The
more computational power a miner has, the higher
the chance of winning the race.

But Proof-of-Work Is:

- Slow (by design)

+ Energy-inefficient (by design)

+ Subject to centralizing economies of scale (mining
pools, large-scale mining facilities)

41

A small-scale GPU-based Bitcoin “mining rig”
(Image credit: investopedia.com)

Artisanal miner (low output,
relatively higher average costs)

Average
cost ($)
¢ - | Industrial miner (increasing
| output leads to lower
Y. —_—— average costs)

0 Q Q, Units produced
- (hash-rate)

A large-scale ASIC-based Bitcoin “mining farm”
(Image credit: stockhouse.com)

B DistriN=t

https://stockhouse.com
https://www.investopedia.com/tech/how-does-bitcoin-mining-work/

- Proof-of-Stake (PoS): the chance of proposing the next block is proportional to the

economic stake in the system.

+ The more tokens “staked” (= locked Iin escrow), the higher the chance of
becoming the next block proposer.

- Many variations of PoS exist. Two large families include:

- Lottery-based Proof-of-Stake. Similar to Proof-of-Work. Also called chain-
based Proof-of-Stake.

- Voting-based Proof-of-Stake. Uses a BFT algorithm like PBFT or similar. Also
called BFT-based Proof-of-Stake.

42 B DistriN=t

-+ Crash fault-tolerant (CFT) consensus: assume participants may fail due to crashes or network
fallures, but also assume all participants execute the consensus algorithm correctly and strictly
follow the same protocol.

olerate up to (but not including) 1/2 participants failing by crashing (“fail-stop”)

—xample: Paxos (Lamport, 1989)

Byzantine fault-tolerant (BFT) consensus: assume participants may fail due to crashes or
network failures, but make no additional assumptions. In particular, processes may incorrectly
execute the consensus algorithm and may deviate from the protocol in arbitrary ways.

- Tolerate up to (but not including) 1/3 processes failing in arbitrary ways

—xample: PBFT (Castro and Liskov, 1999)

43 B DistriN=t

PBFT In Permissionless blockchains: lendermint

Tendermint is an adaptation of PBFT to function as a consensus algorithm for a
permissionless blockchain without requiring Proof-of-Work mining

@ Tendermint

It was one of the first attempts (~2014) to adapt classical (pre-blockchain) BFT algorithms such as
PBFT to support consensus in the context of a blockchain: Block 0 Block 1 Block 2 Blockh-1

Transactions| . « « |Transactions

Genesis
Transactions < Rewards of Rewards of <

Tendermint uses “Proof-of-Stake” to limit participation in the committee and to introduce Sommitiee 1 SIS
token incentives (rewards and penalties).

h+1 o
Rather than seeking agreement on individual operations, peers take turns proposing the ’ (Prerpose> —
next block in the chain. If a +%3 quorum agrees on the block, it is added. / s Invalid block or Vm

Transactions.<_

not received in
time

/ Y
Tendermint assumes a large, slow, wide-area network rather than a smalll, fast, local-area (Commit) <New Round> <Propose Nil> Gropose BuocD
network. Therefore, as in Bitcoin and Ethereum, peers use gossip communication. I .

+ 2/3 no + 2/3
vote for block vote for block

Tendermint supports dynamic group membership safely by requiring a +95 quorum of |
validators to approve of membership changes. It is commonly used along with Proof-of- |
Stake so that only peers that can prove ownership of staked tokens can participate. \

\
‘) no + 2/3 propose ,
\ Vote Nil for block /

+ 2/3 propose

for block
Vote Block }——f’/
Tendermint is used as the consensus algorithm in the Cosmos project and the Cosmos Hub ; - R
I I I : : 7 yy sitive output negative output o P walthia oo »
permissionless blockchain. The latest version is now known as “CometBFT”. e @ (e e &

negative connector

Tendermint supports slashing of staked tokens when validators are observed to deviate
from the protocol.

(Source: Lagaillardie, N.; Djari, M.A.; Gircan, O. A Computational Study on Fairness
of the Tendermint Blockchain Protocol. Information 2019, 10, p. 378)

44 B DistriN=t

Proof-of-Stake consensus in Ethereum: Beacon Chain protocol

Nodes have to stake minimum 32 ether into a deposit contract as collateral to become a
validator. Some or all of a validator’s stake can e destroyed if it is found to be dishonest.
Nodes thus have strong economic incentives to remain honest.

Ethereum works with fixed time slots. In every time slot (spaced 12 seconds apart) a
validator is pseudorandomly selected to be the block proposer and another group of
nodes is pseudorandomly selected to form a committee (with a minimum size of 128).

- The chance to get elected as the block proposer is proportional to a validator’s staked
funds.

- The proposer bundles transactions, executes them and determines the new system state.
They wrap this information into a block and broadcast it to the committee.

- \When validators in the committee receive the block, they re-execute the transactions to
ensure they reach the identical new system state. If they agree, they attest to the validity of
the block by signing it. A 2/3 majority weighted by stake is needed to finalize the block.

- Validators sign blocks using BLS signatures (for compact signature aggregation: only 96
bytes per aggregate signature)

If a validator sees two conflicting blocks for the same slot they pick the one with the
greatest economic weight of block attestations (LMD-GHOST fork-choice rule).

45

I Slot 1 ‘ ‘ Slot 31 |
ed ¥ E & ¥ E & ed
Proposer Proposer
A T/ T A

Committee X

minimum 128 validators
assigned to create
attestations

Committee A

minimum 128 validators
assigned to create
attestations

FA KA

Set of Active Validators

RANDAO combined with the effective balance of
validators is used to sample proposers

(Image credit: Consensys. Source: consensys.net, February 2020)

B DistriN=t

https://consensys.net/blog/news/the-ethereum-2-0-beacon-chain-explained/

Consensus In Permissioned Blockchains

Avold the privacy and scalability challenges of
permissionless blockchains by limiting readers
and/or writers to a set of authorised parties
only

This avoids the sybil attack problem and the
need to use “lottery”-based consensus (Proof-
of-Work, Proof-of-Stake, ...)

Instead, use standard “voting”-based
consensus algorithms such as PBFT .. HYPERLEDGER

FreRe e.rda

ENTERPRISE HYPERLEDGER
ETHEREUM w
A

LLIANCE

\ 4

4

46 B DistriN=t

Permissioned vs Permissionless Blockchains: summary

Network peers

Peer membership

Network size

Network connectivity

Consensus achieved via

Transaction throughput

Transaction & Block finality

Safety threshold

Permissionless

Validator nodes are pseudonymous.

Open (anyone can join, Nno need to ask “permission” to join)

Scales to large number of peers (>1000 nodes)

Low (not all peers may be able to connect to all other peers)

Lottery-based algorithms, based on proof of owning some
scarce resource (e.g. Proof-of-Work, Proof-of-Stake)

Low (~10 TPS for Bitcoin, Ethereum). Generally: the larger the
network, the lower the TPS.

Probabilistic & slow (blocks are considered final only after being
extended by enough newer blocks, which can take 10s of minutes)

At least 50% of a scarce resource (compute power, staked
tokens) under the control of honest (correct) peers.

Permissioned

Validator node identity is usually revealed.

Closed (an administrator authorizes membership, or pre-
existing members vote to update the membership list)

Usually small (< 100 nodes)

High (often fully connected - all nodes can reach all other
nodes)

Voting-based algorithms, such as Byzantine Fault-tolerant
(BFT) consensus algorithms (e.g. PBFT)

High (10,000 or more TPS)
(TPS = transactions per second)

Deterministic & fast (blocks are considered final as soon as 2/3
of validators accepted it, which may take < 1 second)

At least 2f + 1 honest (correct) peers for every f byzantine
peers (N - f = 2f+1). In other words, >2/3 or 67% honest.

Energy-efficiency

Very low for Proof-of-Work. High for Proof-of-Stake.

High (similar to standard replicated databases)

47

B DistriN=t

Final words about consensus algorithms

-+ Consensus protocols, like cryptographic protocols, are rife with implementation subtleties. Just like it is not
wise 1o invent your own cryptography protocol, it is usually not wise to invent your own consensus
algorithm.

- Before Blockchain (pre-2009) the focus of the academic community was almost exclusively on crash fault-
tolerant (CFT) consensus among a closed group of processes.

Sui Mysticeti: 100.000 tps at

- The PBFT algorithm (1999) was a milestone in achieving byzantine fault-tolerant (BFT) consensus in real- <1sec finality (papen)

world networks, but also still assumed a closed group of processes.

Throughput-Latency graph comparing Mysticeti-C
performance with state-of-the-art consensus protocols

- With the advent of Blockchain (post-2009), the focus has shifted to study BFT consensus in an open and
adversarial environment (there is no a-priori closed group of processes).

- Today the state-of-the-art are DAG-based consensus algorithms
- DAG-Rider: All You Need Is DAG (PODC 2021). [I. Keidar, E. Kokoris-Kogias, O. Naor, A. Spiegelman]

- Narwhal & Tusk (EuroSys 2022) [G. Danezis, E. Kokoris-Kogias, A. Sonnino, A. Spiegelman]

- Bullshark (CCS 2022) [A. Spiegelman, N. Giridharan, A. Sonnino, E. Kokoris-Kogias]

(Source: Sui / Mysten Labs, 2024)

48 B DistriN=t

https://arxiv.org/pdf/2310.14821

Blockchains as trusted computers: smart contracts and Ethereum

49 B DistriN=t

Physical view: a blockchain is a peer-to-peer network of computers

Wallet Blockchain network

A
ESf689..A722
41.81
Amount
U S e r S Max Transaction Fee
T Max Total

Signed
Transaction

Transaction

Many independent validators / miners

B DistriN=t

L ogical view: a blockchain Is a transaction processing machine

’ Bitcoin

User(s)
@

Transaction

t fer 2 : IF Alice’s signature is correct
ransier = coins AND she has at least 2 coins

to Bob THEN transfer the coins to Bob

*

/) signed, Alice

B DistriN=t

Ethereum’s iInnovation: make the transactions programmable!

User(s)

®

Transaction

Wallet

| & MetaMask Notification

[=o[@] == |

>

v

ethereum

transter 2 coins
to Bob’s program

0
5> 025
Q @0
Q% ;8 e
~ i
o o
o P
: o
= 010
02 \/01 1 0‘10
o S 2
orfo <
~ ¥
o o
o
-
-
G S
(‘(\ Q‘\«
2o oY

/) signed, Alice

.
.

k’
Bob’s program z/

B DistriN=t

Ethereum’s iInnovation: make the transactions programmable!

User(s)

®

Transaction

.......

>

v

ethereum

transter 2 coins
to Bob’s program

2

signhed, Alice

— <

]

k’
Bob’s program z/

B = -

]

IF at least ${amount} coins

were deposited before ${date}
THEN transfer all stored coins to Bob
ELSE refund all stored coins

Example: a basic crowdfunding contract

B DistriN=t

Blockchalns as frusted virtual computers

4
4
4
4
4
4
4
-
W
W
\ N
%
9
h

ethereum

One single virtual computer
with strong trust guarantees

Bob’s program

Many (1000s) untrustworthy physical computers

54 B DistriN=t

SMmart contracts: basic principle

A vending machine is an automaton that can trade physical assets

<::| 1. insert coins
E:> 2. dispense drink

55 B DistriN=t

SMmart contracts: basic principle

A smart contract is an automaton that can trade digital assets

function approve (address _spendsr, uint256 _value)

returns (kool success) {
allowance [msc.sender] [_spender] = _value;

R , . Insert digital coins (tokens

function approveZndCall (address _spender, uint255 _value, bytes _extraData)
returns (kool success) {
tokenRecipient spender = tokenRecipient (_spender) ;
iZ (approve (_spender, _valu=)) ({
spender. receiveApproval (wsy. sender, value, Lhis, exlraDala);

return true;

function transferFrom(address _from, address _to, uint256 _\:alue) returns (bool success) {
iZ (balanceOf[_from] < _value) throw;
il (balanceof[_to] + _value < balanceOf[_Lo]) Lhzow;
i (_value > allowance[_from] [meg.sender]) throw;
balancedf [_from] -= _value;
balancedf[tc] += wvalue;

SmEws 2. dispense other digital assets
————— or electronic rights

56 B DistriN=t

But who should we trust to faithfully execute the automaton’s code?

- A smart c

ontract is an automaton that can trade digital assets

W

function approve (address _spendsr, uint256 _value)
returns (kool success) {
allowance [msc.sender] [_spender] = _value;

relurn Lrue;

Approve and then comunicate the approved contract in a sing tx
function approveZndCall (address _spender, uint255 _value, bytes _extraData)
returns (kool success) {
tokenRecipient spender = tokenRecipient (_spender) ;
iZ (approve (_spender, _valua)) {
spender. receiveApproval (wsy. sender, value, Lhis, exlraDala);

return true;

function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {
iZ (balanceOf[_from] < _value) throw; t 1

il (balanceOf[_Lo] + _value < balanceOf[_Lo]) Lhrow; Check

i (_value > allowance[_from] [meg.sender]) throw;

balancedf[_from] -= _value:; t

balancedf[tc] += wvalue; Add the same to the recipient
allowance[_from] [msg.sender] -= _value;

Transfer (_from, _to, _value);
return true;

function () {
throw; Prevents accidental sending of ether

57

. Insert digital coins (tokens

2. dispense other digital assets

or electronic rights

B DistriN=t

Delegate trust to a decentralised network (= blockchain!

A smart contract is a replicated automaton that can trade digital assets

Eunction aporove (address _spender, uint256 _value)
eturns (bool success] (

allowance [ns. sender] [_spender] = _value

y

function approveandcall (address _spender, ulnt255 _value, bytes _extraDats)
zeturns. (box

unction transferFron(sddress _from, adéress to, wint2S6 value) recums (ool success) |
= (balanceut [_tzon] < _value) chrow; 12 the = .

< bedaneof_tol) Uscoms - -

coa] (e condes]) theon

fwetion 0
<o

R —

cve (addzess _spender, wint256 _value)
T g—
ilovance [nse sender] [_spender] = _value

Eunction aporove (address _spender, uintZ56 _value)

. Insert digital coins (tokens

(bool success)

Function approverndcall (address _spender, uint255 _value, bytes _extradata)
zeturns (bool success] (
tokenResipient spender = tokerRecipient (_spendsr)

5
42 (approve (_spender, _va

spuislus s iveRpproval sy sersiar, _valus, Uils, _cxieab.

Fanction tran

Fron (sddzess _from, address _to, uint256 _value)
12 (balanceut[_szon) < _valae) throw; s

(balarmceof[_to] + _value < b

(ool success) |

oL [_to1) ticom - o
2 (value > allowance[_fzon] [meg. condes]) throw

balancs on] = _value

balancedf[te] += value
allovance [_£zon] (nsg. sendex] — _value;
Teansfer (_from, _to, _value);

zetuen trve;

allovanse(_from] [msg. sendex] —= value.
Teanster (fron, _to

fmetion 0 1 fmetion 0 ¢
throv; chrov

2. dispense other digital assets
= or electronic rights

zovelndCall (addzess _sperder, wint255 valus, bytes _extzaData)
1

*(address _sperder, uint255 valus, bytes _extzabata)

o1 success] {

retums (bool sue
ipiest spesdes - tokenRecipient (_spesder) |
1 (approve _spender, _value))

- tokerRecipient (_spendar)
L _vazue)) ¢

gl pocnivenpproval (s soisdoc, _valus, this, _sleaDetal | ivenpproval(msy. soisdor, _valus, Uiis, _sxteaData

(address _from, adéress _to, wint256 value) reurms (bool suscess) {
£ (balanceof[_tron] < _value) throw
(adasiwor (0] + _valus < balauceof[_to]) theom; PRp—"

2 (value > xllowsnoal_fron] [neg. sendex]) Shrew;
Balancedf [_Ezon)
e

) - value

[_tron] [msg. sender) —= value
Transfer(Frem, _to, value)

famstion 0 (
chron

replicated code
58 B DistriN=t

ontracts are compiled into bytecode for a simple stack machine

b

Eunction o

rove (addzess _spender, uint256 _value)
eturns (bool success] (
ner)[_spendex] = valve;

=eturns (bool success

.SO|

g e vehpproval (s sz, _valos, Uiis, _sxbosDalal ;

solidity

olidity source code

exFrom(addcess Fron, adéress _to, uint2S6 _value) recurns (bool suceess) {
12 (alanceor(_fron) < _value) throw; oo 17 the nss enongn
(blancsor[_to] + _valus < balameof[_to]) ticow; - -
(_value > allowance[_Eroal [nsg. sendez]] theows .

z/’ Bob’s contract olidity compiler

. _J

EVM bytecode

5
"4
L)

i)

W

Eanction aprove (address _spendr, uintZ56 _value) ©(address _spender, uint256 _value)
zeturns (bool sucoess) (Eood succass)
ilovance [nse sender] [_spender] = _value allovance [msc. sender] [_spender] = _value:

Function approverndcall (address _sperder, uint255 _value, bytes _extraData)
zeturns (bool success

tokenesipiert spende

12 (approve (_spender, _va

eokenRectpient (_spender) 1
e

spunlar macsivehpprosal (ssy misiur, _valus, Uils, _cxieaDela) 1

Fanction transferFron (addzess _from, address _to, uint256 value)

= (balancevt[_fron] < _valse) chrow

l

(balarmeof[_to] + _value < balaieol[_tol) Uscom, - o

Tlowance[_Exex] [neq. condex]) thzow; /) i
balancedf[_from] —= _value: balancedf[from) = _value: e
balancedt [te] Add the same to the recipie: Balancedf[te] += value: A ceipie:
silovance [_£zom) [meq. sendex] — _value; allovanse _ron] [mag. sendex] —- _value.
Teansfer (_from, _to, _value); Transter(to, _value

zetuen trve;

»

function approve (address _spent

zeturns (bool success] {
2 allovance fmsg. sender) [_spender] = _value;

) ' v
. ap , . xt + approve and ¢ the spproved cant le tx +
Zunction aporoveindcall (address _spender, uint255 valus, bytes _extrabata) function approveRndcall (address _spender, uint255 _value, bytes _extzaData)

retums (ool suecess) { s (ool succes

okenesipiert sper <okenfiecipient _spesder) ; pender - tokerecipient _spender) ;

i (approve (_spendsz, vaius)) { vare)) ¢

_value, tis, _eatzapetal

gl pocnivenpproval (s soisdoc, _valus, this, _sleaDetal | spmisles soetvenppro il (nsy seisies

Ethereum Virtual Machine

. _J

1
y
i
%
i
E
1

network of validator nodes
59 B DistriN=t

Example: crowdfunding as a smart contract

+ Can we model a crowdfunding campaign as an automaton?

function approve (address _spendsr, uint256 _value)
returns (kool success) {
allowance [msc.sender] [_spender] = _value;
relurn Lrue;
}
function approvelndCa address _spender, uint255 _value, bytes _extraData)
returns (kool success) {
tokenRecipient spender = tokenRecipient (_spender) ;
iZ (approve (_spender, _valu=)) ({
spender. receiveApproval (wsy. sender, value, Lhis, exlraDala);
return true;
}
}
function transferFrom(a ess rom, dress _to, uint256 _\:alue) returns (bool success) {
iZ (balanceOf[£ _value) tl 1eck 1 3
i (balanceOl valu ba cOf[Lo]) Lhrow;
i (value [_fx r]) throw;
balance0f alue
ue
nde

Crowdfundlng contract

>
5

. Backers deposit tokens (pledge support)

2. Walit until deadline to see if the goal was met

a. Either the backers withdraw their share...

. or the beneficiary withdraws the full deposit

B DistriN=t

Example: crowdfunding as a smart contract

8 ? Step 1: the owner creates the contract,
1. Setup stating target amount + funding deadline
(which cannot be changed afterwards)

Step 2: backers can donate money
(deposit funds into the contract)
IF the funding deadline has not yet passed

Owner
(the beneficiary of the crowdfunding action)

2. Accepting
donations

Step 3a (crowdfunding successful):
the owner can claim the funds
deadline passed AND (withdraw funds from the contract)

A |
/’ Crowdfunding |
g conact oo
/ T \ amountnotreached |E the funding deadline has passed AND

3a. Crowdfund the minimum target amount has been met
SUCCESS

Step 3b (crowdfunding failed):

e 8 8 backers can reclaim their donations

- Backers 3b. Crowdiund (withdraw funds from the contract)
(the parties that donate funds) failed IF the funding deadline has passed AND
the minimum target amount has not been met

B DistriN=t

Crowdfunding contract: Solidity source code

contract Crowdfunding {

address public owner; // the beneficiary address
uint256 public deadline; // campaign deadline in number of days
uint256 public goal; // funding goal in ether

mapping (address => uint256) public backers; // the share of each backer

constructor(uint256 numberOfDays, uint256 _goal) {
owner = msg.sender;
deadline = block.timestamp + (numberOfDays * 1 days);
goal = goal;

}
function donate() public payable {

require(block.timestamp < deadline); // before the fundraising deadline
backers[msg.sender] += msg.value;

¥

function claimFunds() public {
require(address(this).balance >= goal); // funding goal met
require(block.timestamp >= deadline); // after the withdrawal period
require(msg.sender == owner);
payable(msg.sender).transfer(address(this).balance);

}

function getRefund() public {
require(address(this).balance < goal); // campaign failed: goal not met
require(block.timestamp >= deadline); // in the withdrawal period

uint256 donation = backers[msg.sender]; (Based on: llya Sergey, “The next 700 smart contract
backers[msg.sender] = 0; languages”, Principles of Blockchain Systems 2021)

payable(msg.sender).transfer(donation);

) 62 B DistriN=t

Crowdfunding contract: Solidity source code

contract Crowdfunding {

address public owner; // the beneficiary address
uint256 public deadline; // campaign deadline in number of days
uint256 public goal; // funding goal in ether

mapping (address => uint256) public backers; // the share of each backer

constructor(uint256 numberOfDays, uint256 _goal) {
owner = msg.sender;
deadline = block.timestamp + (numberOfDays * 1 days);
goal = goal;

\ Declare a contract.

function donate() public payable {
require(block.timestamp < deadline); // before the fundraising deadline

} backers[msg.sender] += msg.value; Slrrlar -tO =) C‘aSS in OOP, a
function claimFunds() public { COrraCt can have State

require(address(this).balance >= goal); // funding goal met - -
require(block.timestamp >= deadline); // after the withdrawal period (Val’lab\eS) and beha‘"our
require(msg.sender == owner); -
payable(msg.sender).transfer(address(this).balance); (funCtIOnS)

}
function getRefund() public {

require(address(this).balance < goal); // campaign failed: goal not met
require(block.timestamp >= deadline); // in the withdrawal period
uint256 donation = backers[msg.sender];

backers[msg.sender] = 0;

payable(msg.sender).transfer(donation);

1 63 B DistriN=t

Crowdfunding contract: Solidity source code

contract Crowdfunding {

address public owner; // the beneficiary address
uint256 public deadline; // campaignh deadline in number of days
uint256 public goal; // funding goal in ether

mapping (address => uint256) public backers; // the share of each backer

constructor(uint256 numberOfDays, uint256 goal) {
owner = msg.sender;
deadline = block.timestamp + (numberOfDays * 1 days);
goal = goal;

}

function donate() public payable { '
require(block.timestamp < deadline); // before the fundraising deadline AH COntraCt State S
backers[msg.sender] += msg.value; replicated aﬂd pr“C‘y

} -

function clainFunds() public { persisted on the
require(address(this).balance >= goal); // funding goal met ;
require(block.timestamp >= deadline); // after the withdrawal period b‘OCkChaln
require(msg.sender == owner);

payable(msg.sender).transfer(address(this).balance);

}

function getRefund() public {
require(address(this).balance < goal); // campaign failed: goal not met
require(block.timestamp >= deadline); // in the withdrawal period
uint256 donation = backers[msg.sender];
backers[msg.sender] = 0;
payable(msg.sender).transfer(donation);

) 64 LRI DistriN=t

Crowdfunding contract: Solidity source code

contract Crowdfunding {

address public owner; // the beneficiary address

uint256 public deadline; // campaign deadline in number of days

uint256 public goal; // funding goal in ether

mapping (address => uint256) public backers; // the share of each backer

constructor(uint256 numberOfDays, uint256 _goal) { Owner

owner = msg.sender;
deadline = block.timestamp + (numberOfDays * 1 days);

goal = _goal; lconstr‘uctor‘()

(the beneficiary of the crowdfunding action)

claimFunds()

>’ Crowdfunding
p contract

}
function donate() public payable {

require(block.timestamp < deadline); // before the fundraising deadline
backers[msg.sender] += msg.value;

}

function claimFunds() public {
require(address(this).balance >= goal); // funding goal met donate()
require(block.timestamp >= deadline); // after the withdrawal period getRefund()
require(msg.sender == owner);
payable(msg.sender).transfer(address(this).balance);

}

function getRefund() public { 8 8 8

require(address(this).balance < goal); // campaign failed: goal not met Backers
require(block.timestamp >= deadline); // in the withdrawal period ,

uint256 donation = backers[msg.sender]; (the parties that donate funds)
backers[msg.sender] = 0;

payable(msg.sender).transfer(donation);

) 65 LRI DistriN=t

Crowdfunding contract: Solidity source code

contract Crowdfunding {

address public owner; // the beneficiary address
uint256 public deadline; // campaign deadline in number of days
uint256 public goal; // funding goal in ether

mapping (address => uint256) public backers; // the share of each backer

constructor(uint256 numberOfDays, uint256 _goal) {
owner = msg.sender;
deadline = block.timestamp + (numberOfDays * 1 days);
goal = goal;

}
function donate() public payable {

require(block.timestamp < deadline); // before the fundraising deadline
backers[msg.sender] += msg.value;

} Instructions to deposit and
function claimFunds() public { WlthdraW mOﬂey (ether)

require(address(this).balance >= goal); // funding goal met
require(block.timestamp >= deadline); // after the withdrawal period
require(msg.sender == owner);
payable(msg.sender).transfer(address(this).balance);

}

function getRefund() public {
require(address(this).balance < goal); // campaign failed: goal not met
require(block.timestamp >= deadline); // in the withdrawal period
uint256 donation = backers[msg.sender];
backers[msg.sender] = 0;
payable(msg.sender).transfer(donation);

) 66 B DistriN=t

Decentralized Applications (Dapps)

67 B DistriN=t

- Decentralized applications (dapps) are web applications backed by smart

contracts

- To achieve transparency (publish the core application logic on a
blockchain, immutable and verifiable by anyone)

- To resist censorship (avoid a single point of control)

- To improve reliability (avoid a single point of failure)

68 IS DistriN=t

Decentralized applications: examples

‘ Compound

N1 MAKER

Decentralized autonomous
organizations (DAOSs)

Decentralized lending
and borrowing protocol

it

@ AUGUR

Decentralized prediction

markets & betting platforms ~lay-to-earn” games

69

EN UNISWAP

Decentralized exchanges
Atomic token swaps

(® WeiFund

WEIFUND [S
DECENTRALIZED
CROWD-FUNDING

Decentralized
crowd-funding

B DistriN=t

Traditional Welb application architecture

Following a standard “3-tier” architecture: =
e

Front-end: code that runs in the browser (or on a ‘Webserver | “;
mobile app), mostly Ul logic ot e

. JavaScript, HTML, CSS
Back-end: code that runs on a web server, focus i 1
on business logic '

Back-end

: Node.js, Python, Java, Go, etc
Database: persists the application state g I

' >
t Is common for the application to define the user’s ,
identity and to store username and password in the g Database
database. The user does not control their identity. i L

(Source: P. Kasireddy, “The Architecture of a Web 3.0 application”, Medium.com:
https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application)

70 B DistriN=t

https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application

Decentralized Web application architecture

Front-end: largely unchanged (mostly Ul logic) emet”
Back-end: (part of) the application logic is implemented as a : ontend
smart contract and published on the blockchain JavaScr, HTML, O53
Database? The state of the smart contract is persistedon v
the blockchain (replicated across all validator nodes)

—— Provider
Node-as-a-Service Provider: offers a REST API to relay B v
requests from browsers or mobile apps to peers in the
blockchain network. T)
Signer: for any user action that results in an update to the L’[J LWJ LA L‘(J
smart contract, a signature is needed from the user. This Ethereum Vitual Machine
task typically delegated to a wallet that securely stores the l
user’s keys. The user retains control over their keys (they § Block | Biock | Block | Block | Biock |
are not stored or controlled by the application). g Chereum blockehain g

71 (Source: P. Kasireddy, “The Architecture of a Web 3.0 application”, Medium.com: m v
https.//www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application) D I St r I N — t

https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application

Common Dapp “dev stack” options

- Front-end libraries et
U3 @ i sover T 5 p B
web3 .jS ethers.js Frqnt-end <

+ Frameworks ¢ Hardhat C |

o — Provider -

* Node Providers A . chemy - LH LTJ L’!’J %

Ethereum Virtual Machine
, l
* Signers - ‘A’ WebSaUth E Ethereum blockchain

METAMASK

79 (Source: P. Kasireddy, “The Architecture of a Web 3.0 application”, Medium.com: m v
https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application) D I St rl N — t

https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application

Ethereum has challenges

Can be expensive to use (> $10 in emandiea o sowerarscions a1
transaction fees is not uncommon)

Slow (~10-14 transactions per second)

Bugs In contracts can be fatal

1 https://ethereum.org/en/developers/docs/scaling

B DistriN=t

“Layer 2”7 scaling solutions (a.k.a. “rollups”)

Key idea: batch many “Layer 2” (L2)
transactions into a single combined
transaction stored on “Layer 17 (L1)

Offer a way for anyone to verify that the
pbatch of L2 transactions was correctly
executed

)
)

)
)

“fraud proofs” => optimistic rollups

“zero-knowledge proofs”™ => zk-rollups

B DistriN=t

‘Layer 2" scaling solutions: landscape

B DistriN=t

‘Layer 27 scaling solutions: benefits

- Lower transaction fees (< $0.01 / tx)

& StarkNet <$0.01 <$0.01 v
72 Arbitrum One <$0.01 $0.01 v
@ Optimism <$0.01 $0.02 v
5 Polygon zkEVM $0.02 $0.32 v
Metis Network & $0.03 $0.14
{- Loopring $0.05 -V
4 zkSync Lite $0.06 $0.14 v
© DeGate $0.17 -V

(Source: [2fees.info)

Activity Scaling factor: 9.34X

- Higher transaction throughput S R
(100-1000 tps at ~13min finality)

v ETH Mainnet Transactions

(Source: L.2Beat)

B DistriN=t

http://l2fees.info

Conclusion

77 B DistriN=t

Blockchain: hot topics & open challenges

Problem Solution Examples

Lack of Privacy: can’t store secrets on a

. Zero-knowledge Proofs /Cash, Privacy Pools, StarkNet, ...
blockchain
Poor scglab!llty: secure,”scalable, Layer-2 rollups, AppChains, Payment Cosmos, Arbitrum, Optimism, Lightning, ..
decentralized: choose two channels

Security vulnerabilities in smart contracts | Use safer languages and abstractions Rust (Solana, ICE, NEAR, ...), Move (Sui,

Aptos), ...
(Mobile/\Web) clients must trust servers to | Stateless “light clients”, compact inclusion | Verkle trees, Mina protocol, Celestia, Portal
access the blockchain proofs, decentralized RPC protocols, ... network, ...
Siloes: assets stored on one blockchain Cross-chain “bridges”, atomic swaps Inter-blockchain Communication (IBC)
cannot be used on another (hashed time-locked contracts), ... protocol, Wormhole, ...

Oracles: how to get trustworthy, reliable

access 1o off-chain data? Decentralized Oracle Networks (DONSs) Chainlink, ...

78 B DistriN=t

The origins of Blockchain

What are the cryptographic building blocks of a blockchain®?

How does a blockchain process transactions”? Life of a blockchain transaction.

Consensus in blockchain networks: Proof-of-Work, Proof-of-Stake, BFT Consensus

Permissioned versus Permissionless blockchain networks

Slockchains as trusted computers: smart contracts and Ethereum

Building decentralized applications using blockchains

79 B DistriN=t

Further reading - good Iintroductory resources on Blockchain

Narayanan et al. “Bitcoin and Cryptocurrency Technologies
Princeton University Press, 2016 - preprint

avallable for free

online at: https://bitcoinbook.cs.princeton.edu/

Satoshi Nakamoto, “Bitcol

Roger Wattenhofer (ETH Zurich),

N: A

SItcoir

System” a.k.a. the ©

“Blockchain Science”, 2019

Peer-to-Peer Electronic Cash

whitepaper” (2008)

Recommended: an annotated online version with helpful
notes & clarifications (D. Hogg, 2021): https.//

blog.infocruncher.com/2021/10/31/bitcoin-whitepaper-

annotated/

80

Third Edition

_Blockchain
cience

Distributed
Ledger
Technology

BITCOIN AND o
CRYPTOCURRENCY
TECHNOLOGIES

A Comprehensive Introduction

Bitcoin: AP to-P Electronic Cash System
kam
Jgmx.c
coin.o
Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from o an ithol i
financial institution. Digital signatur solu
benefits are lost if a trusted third part reven
We propose a solution to the double-sp: a
The network timestamps transactions 0 an
hash-based proof-of-work, forming a han
proof-of- The longest chain roof
nts witne but proof that it ca ool
gasam ¢ of CPU power is ¢ are
ck the k, they'll generate t
ork it uires minimal struct
odes can leave and rejoi
in as proof of what !

B DistriN=t

https://bitcoinbook.cs.princeton.edu/
https://blog.infocruncher.com/2021/10/31/bitcoin-whitepaper-annotated/
https://blog.infocruncher.com/2021/10/31/bitcoin-whitepaper-annotated/
https://blog.infocruncher.com/2021/10/31/bitcoin-whitepaper-annotated/

Further reading - good Iintroductory resources on Ethereum

—thereum official project website: https://ethereum.org/

—thereum whitepaper: https://ethereum.org/en/whitepaper/

—therscan block explorer: https://etherscan.io/

Remix, an online IDE and playground for Solidity: https://remix.ethereum.org/

Solidity by Example: https://solidity-by-example.org/

OpenZeppelin reusable contracts: https:// www.openzeppelin.com/contracts

Awesome-Ethereum: https://qgithub.com/ttumiel/Awesome-Ethereum

81 IS DistriN=t

https://ethereum.org/
https://ethereum.org/en/whitepaper/
https://etherscan.io/
https://remix.ethereum.org/
https://solidity-by-example.org/
https://www.openzeppelin.com/contracts
https://github.com/ttumiel/Awesome-Ethereum

Work Projects

82 B DistriN=t

Work projects

Project 1: build an end-to-end decentralized application on Ethereum

Project 2: perform a comparative study of consensus protocols for blockchains

83 B DistriN=t

Project 1: build a decentralized application on Ethereum

Pick your own application use case, or elaborate on the Crowdfunding example
Components to build:
Front-end (website Ul, wallet integration)
Back-end (web-server, gateway to blockchain)
Smart contract (Solidity program, deployed on a test-network)
Things to consider:
Development: use a developer framework like Hardhat
Testing: write unit tests to test the important interactions
Static analysis: use a static analysis tool for Solidity to find bugs

Stretch goal: ook into formal verification of key safety / liveness properties

84 B DistriN=t

Project 2: comparative study of consensus protocols for blockchains

Compare the consensus protocols of 5 real-world blockchains (2 classic, 3 modern):
Bitcoin’s original Proof-of-Work based protocol
Ethereum’s modern Proof-of-Stake based protocol
Solana’s Proof-of-History based protocol
Internet Computer’s ICC consensus protocol
Sui’s Mysticeti protocol
Focus on:
History, origins
Performance (throughput, latency)
Scalability in terms of network size

Security thresholds (safety, liveness)

85 B DistriN=t

KU LEUVEN

Blockchain and Distributed Ledgers

Tom Van Cutsem
DistriNet, KU Leuven

Questions?
tom.vancutsem@kuleuven.be

tvcutsem.github.io be.linkedin.com/in/tomvc github.com/tvcutsem @tvcutsem.bsky.social @tvcutsem@techhub.social

mailto:tom.vancutsem@kuleuven.be
https://tvcutsem.github.io
https://techhub.social/@tvcutsem
https://bsky.app/profile/tvcutsem.bsky.social
https://be.linkedin.com/in/tomvc
https://github.com/tvcutsem

