
Designing “least-authority” JavaScript apps
Tom Van Cutsem

KU Leuven

@tvcutsem.bsky.socialgithub.com/tvcutsemtvcutsem.github.io be.linkedin.com/in/tomvc @tvcutsem@techhub.social

https://tvcutsem.github.io
https://be.linkedin.com/in/tomvc
https://bsky.app/profile/tvcutsem.bsky.social
https://techhub.social/@tvcutsem
https://github.com/tvcutsem

A software engineering view of Web application security

2

“Security is just an extreme form of Modularity”

- Mark S. Miller
(Chief Scientist, Agoric)

Modularity: avoid needless software dependencies to protect against unintended bugs

Security: avoid needless software dependencies to protect against deliberate exploits

This Lecture

• Part I: why module isolation is critical to modern JavaScript applications

• Part II: the Principle of Least Authority, by example (in JavaScript)

• Part III: safely composing modules using least-authority patterns

3

Part I
Why module isolation is critical to modern JavaScript applications

4

JavaScript is no longer just about the Web. Used widely across all tiers.

5

Embedded Mobile DatabaseServerDesktop/Native

Modern JavaScript applications are built from thousands of modules

6

(source: modulecounts.com, Nov 2022)

2,000,000 modules on NPM

(source: npm blog, December 2018)

“The average modern web application has over
1000 modules […] 97% of the code in a modern
web application comes from npm. An individual
developer is responsible only for the final 3% that

makes their application unique and useful.”

http://modulecounts.com

It is exceedingly common to run code you don’t know or trust in a common environment

Composing modules: it’s all about trust

7

Webpage

Browser env

Module Module

DOM Cookies

Web server app

Server env

Module Module

Requests Files

It is exceedingly common to run code you don’t know or trust in a common environment

What can happen when a module goes rogue?

8

Webpage

Browser env

Module Module

DOM Cookies

Web server app

Server env

Module Module

Requests Files

What can happen when a module goes rogue?

9

Webpage

Browser env

Module Module

DOM Cookies

<script	src=“http://evil.com/ad.js”>

What can happen when a module goes rogue?

Web server app

Server env

Module Module

Requests Files

npm	install	event-stream

(source: theregister.co.uk)
10

http://theregister.co.uk

What can happen when a module goes rogue?

Web server app

Server env

Module Module

Requests Files

npm	install	ethers

(source: https://thehackernews.com/ March 2025)

11

https://thehackernews.com/

These are examples of software supply chain attacks

12

(Source: https://develop.secure.software/6-reasons-software-security-
teams-need-to-go-beyond-vulnerability-response, august 2022)

https://develop.secure.software/6-reasons-software-security-teams-need-to-go-beyond-vulnerability-response
https://develop.secure.software/6-reasons-software-security-teams-need-to-go-beyond-vulnerability-response
https://develop.secure.software/6-reasons-software-security-teams-need-to-go-beyond-vulnerability-response

Increasing awareness

13

npm audit

GitHub security alertsnpm security advisories

Snyk vulnerability DB

 Great tools, but address the symptoms, not the root cause

Avoiding interference is the name of the game

• Shield important resources/APIs from modules that don’t need access

• Apply Principle of Least Authority (POLA) to application design

14

Webpage

Browser env

Module Module

DOM Cookies

Web server app

Server env

Module Module

Requests Files

We’ll need more than simply relying on Browser Same-origin Policy

15

Browser

Page from origin A Page from origin B

Module A Module B
Read/write

Read/write

Our focus

Part II
The Principle of Least Authority, by example (in JavaScript)

16

Principle of Least Authority (POLA)

•A module should only be given the authority it needs to do its job, and nothing more

17

JS app
Module A Module B

restricted	
API	access

Host resources

full	API	
access

What is “authority” in a JavaScript app?

• Authority is linked to resources represented as objects (or functions)

• Objects can hold references (“pointers”) to resource objects

• The authority to use a resource is expressed by calling a method/function on a reference

18

JS app
Module A Module B

restricted	
API	access

Host resources

full	API	
access

files, http connections,
timers, the DOM, …

fs

doc

reference
// A calls:
fs.readFile(…)

// B calls:
doc.read()

method call

Delegating authority == sharing references, under the right assumptions

// in our app’s main function:
let log = new Log();
alice.setup(log)
bob.setup(log)

Consider an app maintaining a message log.

The app loads two untrusted modules Alice and Bob.

We would like Alice and Bob to only have access to
this log file and nothing more.

Host file system

19

Bob
setup

main

Alice
setup

log

Delegating authority == sharing references, under the right assumptions

Alice Bob

Host file system

setup

20

setup

log

main

// in our app’s main function:
let log = new Log();
alice.setup(log)
bob.setup(log)

Consider an app maintaining a message log.

The app loads two untrusted modules Alice and Bob.

We would like Alice and Bob to only have access to
this log file and nothing more.

Delegating authority == sharing references, under the right assumptions

Alice Bob

Host file system

setup

21

setup

log

main

// in our app’s main function:
let log = new Log();
alice.setup(log)
bob.setup(log)

Consider an app maintaining a message log.

The app loads two untrusted modules Alice and Bob.

We would like Alice and Bob to only have access to
this log file and nothing more.

Delegating authority == sharing references, under the right assumptions

Alice Bob

Host file system

setup

22

setup

log

main

// in our app’s main function:
let log = new Log();
alice.setup(log)
bob.setup(log)

Consider an app maintaining a message log.

The app loads two untrusted modules Alice and Bob.

We would like Alice and Bob to only have access to
this log file and nothing more.

Delegating authority == sharing references, under the right assumptions

Alice Bob

Host file system

setup

23

setup

log

main

// in our app’s main function:
let log = new Log();
alice.setup(log)
bob.setup(log)

Consider an app maintaining a message log.

The app loads two untrusted modules Alice and Bob.

We would like Alice and Bob to only have access to
this log file and nothing more.

Delegating authority == sharing references, under the right assumptions

Alice Bob

Host file system

setup

24

setup

log

main

// in our app’s main function:
let log = new Log();
alice.setup(log)
bob.setup(log)

Consider an app maintaining a message log.

The app loads two untrusted modules Alice and Bob.

We would like Alice and Bob to only have access to
this log file and nothing more.

What are our assumptions?

• Alice and Bob cannot create references to other app objects. 
✅ JavaScript is memory-safe. References are unforgeable.

• The log can hide its reference to the host file system from
Alice and Bob. 
✅ JavaScript has strict lexical scoping rules that support
hiding pointers in private local variables.

• Alice and Bob cannot communicate via global mutable vars. 
⚠ App must ensure that there is no global mutable state!

• Alice and Bob cannot circumvent the log’s public API. 
⚠ App must ensure that all exported API objects are
immutable.

• Alice and Bob cannot access the host file system by default. 
⚠ App must ensure each module starts out with no
references to powerful globals by default.

25

Alice Bob

Host file system

setupsetup

log

main

Running example: apply POLA to a basic shared log

We would like Alice to only write to the log, and Bob to only read from the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = new Log();
alice.setup(log);
bob.setup(log);

JS app
Alice Bob

log

26

Running example: apply POLA to a basic shared log

 If Bob goes rogue, what could go wrong?

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = new Log();
alice.setup(log);
bob.setup(log);

JS app
Alice Bob

log

27

Bob has way too much authority!

 If Bob goes rogue, what could go wrong?

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = new Log();
alice.setup(log);
bob.setup(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log (excess authority)
log.write(“I’m polluting the log”)

// Bob can delete the entire log (leak mutable state)
log.read().length = 0

// Bob can replace the ‘write’ function (api poisoning)
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}
// Bob can replace the built-ins (prototype poisoning)
Array.prototype.push = function(msg) {
 console.log(“I’m not logging anything”);
}

28

 Load each module in its own environment, 
 with its own set of “primordial” objects

How to solve “prototype poisoning” attacks?

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = new Log();
alice.setup(log);
bob.setup(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log (excess authority)
log.write(“I’m polluting the log”)

// Bob can delete the entire log (leak mutable state)
log.read().length = 0

// Bob can replace the ‘write’ function (api poisoning)
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}
// Bob can replace the built-ins (prototype poisoning)
Array.prototype.push = function(msg) {
 console.log(“I’m not logging anything”);
}

29

Prerequisite: isolating JavaScript modules

•Today: JavaScript offers no standard way to isolate a
module (load it in a separate environment)

•Lots of host-specific isolation mechanisms, but non-
portable and ill-defined:

• Web Workers: no shared memory, can only
communicate using message-passing

• iframes: mutable primordials, “identity
discontinuity”

• nodejs vm module: not designed for running
untrusted code! See article on Snyk blog ->

JS app
Environment

Module Module

Shared resources

30

(Source: snyk.io blog, 2023)

https://snyk.io/blog/security-concerns-javascript-sandbox-node-js-vm-module/

ShadowRealms (ECMA TC39 Stage 2.7 proposal)

ShadowRealm

Host environment

ShadowRealm

globalThis

Array

globalThis
Primordials*Math

Objects

* Primordials: built-in objects like Object, Object.prototype, Array, Function, Math, JSON, etc.

Array

Math

31

 Intuitions: “iframe without DOM”, “principled version of node’s `vm` module”

Compartments (ECMA TC39 Stage 1 proposal)

Host environment

Compartment Compartment

Array

globalThis

Array

globalThis globalThis
Primordials*Math

Objects

Deep-frozen	
Primordials

Deep-frozen	
Objects

MathShadowRealm ShadowRealm

32
* Primordials: built-in objects like Object, Object.prototype, Array, Function, Math, JSON, etc.

 Each Compartment has its own global object but shared (immutable) primordials.

Full JavaScript
• everything mutable by default, can mess up the global environment
• powerful globals like `window` or `process` accessible by default
• no easy way to eval untrusted code in a sandboxed environment

Key idea: code running in
hardened JS can only affect
the outside world through
objects (capabilities) explicitly
granted to it from outside.

Hardened JavaScript is a secure subset of standard JavaScript

(inspired by the diagram at https://github.com/Agoric/Jessie)

33

Hardened JavaScript
• no mutable primordials
• no powerful global objects by default
• can create Compartments

hardenedjs.org/

JSON (Data only)

https://github.com/Agoric/Jessie
https://hardenedjs.org/

Hardened JavaScript: some history

 Google develops a project called “Caja” for safe embedding of
dynamic web content (JavaScript scripts) in web pages

 Attempts are made to standardize core features that enable secure
sandboxing as “Secure ECMAScript” (SES) at ECMA TC39

 Standardisation process got stalled, but work continued on a modified
node.js runtime called “endo”, supporting SES on the server

 A company called Agoric rebrands SES to “Hardened JavaScript”,
works with Moddable and Metamask on implementation and tooling

HardenedJS is used by several companies to isolate JavaScript
modules for IoT (Moddable), Web3 (Agoric), SaaS (Salesforce), …

34

Google Caja2009

2015

Today

2018 endo

2020

LavaMoat

•Command-line tool that puts each package dependency
into its own hardened JS sandbox environment

•Auto-generates config file indicating authority needed by
each package

•For node.js and Web. Plugs into build tools like Webpack

https://lavamoat.github.io/

35

npm install -D lavamoat  
npx lavamoat app.js --autopolicy

{
 "resources": {
 "some-package": {
 "globals": {
 "Buffer.from": true
 },
 "packages": {
 "some-package>entropoetry": true
 }
 },
 "some-package>entropoetry": {
 "builtin": {
 "assert": true,
 "buffer.Buffer": true,
 "zlib": true
 },
 "globals": {
 "console": true,
 "process.exitCode": "write"
 },
 "packages": {
 "some-package>entropoetry>bn.js": true
 }
 },
 "some-package>entropoetry>bn.js": {
 "builtin": {
 "buffer.Buffer": true
 },
 "globals": {
 "Buffer": true
 }
 }
 }
}

app.js
└─┬ some-package
 └─┬ entropoetry
 └── bn.js

https://lavamoat.github.io/

LavaMoat enables more focused security reviews

36

lavamoat-viz: https://github.com/LavaMoat/LavaMoat/tree/lavamoat-viz

Exposure to package dependencies
without LavaMoat sandboxing

Exposure to package dependencies
with LavaMoat sandboxing

https://github.com/LavaMoat/LavaMoat/tree/lavamoat-viz

Bonus: avoiding unwanted post-install scripts

37

https://www.npmjs.com/package/@lavamoat/allow-scripts

• Package managers like npm allow packages to
run install scripts

• A compromised dependency can exploit this to
run code as part of your project installation script

• Lavamoat’s allow-scripts tool configures your
project to disable running install scripts by default

• Edit allowed packages in package.json

• New install scripts entering your dependency
tree will no longer run automatically unless
approved

npm install -D @lavamoat/allow-scripts  
npx --no-install allow-scripts auto

// in package.json
{
 "lavamoat": {
 "allowScripts": {
 "keccak": true,
 "core-js": false
 }
 }
}

https://www.npmjs.com/package/@lavamoat/allow-scripts

With Alice and Bob’s code running in their own 
Compartment, we mitigate the prototype
poisoning attack

Back to our example

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = new Log();
alice.setup(log);
bob.setup(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log (excess authority)
log.write(“I’m polluting the log”)

// Bob can delete the entire log (leak mutable state)
log.read().length = 0

// Bob can replace the ‘write’ function (api poisoning)
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}
// Bob can replace the built-ins (prototype poisoning)
Array.prototype.push = function(msg) {
 console.log(“I’m not logging anything”);
}

38

One down, three to go

POLA: we would like Alice to only write to the log,
and Bob to only read from the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = new Log();
alice.setup(log);
bob.setup(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log (excess authority)
log.write(“I’m polluting the log”)

// Bob can delete the entire log (leak mutable state)
log.read().length = 0

// Bob can replace the ‘write’ function (api poisoning)
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}

39

Object.freeze makes property bindings (not
their values) immutable

Make the log’s interface tamper-proof

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = Object.freeze(new Log());
alice.setup(log);
bob.setup(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log (excess authority)
log.write(“I’m polluting the log”)

// Bob can delete the entire log (leak mutable state)
log.read().length = 0

// Bob can replace the ‘write’ function (api poisoning)
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}

40

Make the log’s interface tamper-proof. Oops.

Functions are mutable too. Freeze doesn’t
recursively freeze the object’s functions.

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = Object.freeze(new Log());
alice.setup(log);
bob.setup(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log (excess authority)
log.write(“I’m polluting the log”)

// Bob can delete the entire log (leak mutable state)
log.read().length = 0

// Bob can replace the ‘write’ function (api poisoning)
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}

// Bob can still modify the write function object
log.write.apply = function() { “gotcha” };

41

Make the log’s interface tamper-proof

Hardened JavaScript provides a harden
function that “deep-freezes” an object

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = harden(new Log());
alice.setup(log);
bob.setup(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log (excess authority)
log.write(“I’m polluting the log”)

// Bob can delete the entire log (leak mutable state)
log.read().length = 0

// Bob can replace the ‘write’ function (api poisoning)
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}

// Bob can still modify the write function object
log.write.apply = function() { “gotcha” };

42

Two down, two to go

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = harden(new Log());
alice.setup(log);
bob.setup(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log (excess authority)
log.write(“I’m polluting the log”)

// Bob can delete the entire log (leak mutable state)
log.read().length = 0

// Bob can replace the ‘write’ function (api poisoning)
log.write = function(msg) {
 console.log(“I’m not logging anything”);
}

// Bob can still modify the write function object
log.write.apply = function() { “gotcha” };

43

Two down, two to go

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return this.messages_; }
}

let log = harden(new Log());
alice.setup(log);
bob.setup(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log (excess authority)
log.write(“I’m polluting the log”)

// Bob can delete the entire log (leak mutable state)
log.read().length = 0

44

Don’t share access to mutable internals

• Modify read() to return a copy of the mutable state.

• Even better would be to use a more efficient copy-on-write or
“immutable” data structure (see immutable-js.com)

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return [...this.messages_]; }
}

let log = harden(new Log());
alice.setup(log);
bob.setup(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log (excess authority)
log.write(“I’m polluting the log”)

// Bob can delete the entire log (leak mutable state)
log.read().length = 0

45

http://immutable-js.com

Three down, one to go

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return [...this.messages_]; }
}

let log = harden(new Log());
alice.setup(log);
bob.setup(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log (excess authority)
log.write(“I’m polluting the log”)

// Bob can delete the entire log (leak mutable state)
log.read().length = 0

46

Three down, one to go

• Recall: we would like Alice to only write to the log, and Bob
to only read from the log.

• Bob receives too much authority. How to limit?

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return [...this.messages_]; }
}

let log = harden(new Log());
alice.setup(log);
bob.setup(log);

JS app
Alice Bob

log

// in bob.js
// Bob can just write to the log (excess authority)
log.write(“I’m polluting the log”)

47

Pass only the authority that Bob needs.

Just pass the write function to Alice and the read
function to Bob.

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return [...this.messages_]; }
}

let log = new Log();
let read = harden(() => log.read());
let write = harden((msg) => log.write(msg));
alice.setup(write);
bob.setup(read);

JS app
Alice Bob

write

// in bob.js
// Bob can just write to the log (excess authority)
log.write(“I’m polluting the log”)

read𝑓𝑓

48

Success! We thwarted all of Evil Bob’s attacks.

// in bob.js
// Bob can just write to the log (excess authority)
log.write(“I’m polluting the log”)

JS app
Alice Bob

49

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return [...this.messages_]; }
}

let log = new Log();
let read = harden(() => log.read());
let write = harden((msg) => log.write(msg));
alice.setup(write);
bob.setup(read);

write read𝑓𝑓

The burden of correct use is on the client
of the class. Can we avoid this?

Is there a better way to write this code?

import * as alice from "alice.js";
import * as bob from “bob.js";

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return [...this.messages_]; }
}

let log = new Log();
let read = harden(() => log.read());
let write = harden((msg) => log.write(msg));
alice.setup(write);
bob.setup(read);

JS app
Alice Bob

write read𝑓𝑓

50

Use the Function as Object pattern

• A record of closures hiding state is a fine representation of an
object of methods hiding instance vars

• Pattern long advocated by Doug Crockford instead of using
classes or prototypes

class Log {
 constructor() {
 this.messages_ = [];
 }
 write(msg) { this.messages_.push(msg); }
 read() { return [...this.messages_]; }
}

let log = new Log();
let read = harden(() => log.read());
let write = harden((msg) => log.write(msg));
alice.setup(write);
bob.setup(read);

JS app
Alice Bob

write read𝑓𝑓

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
alice.setup(log.write);
bob.setup(log.read);

(See also https://martinfowler.com/bliki/FunctionAsObject.html)

51

https://martinfowler.com/bliki/FunctionAsObject.html

Use the Function as Object pattern
JS app

Alice Bob

write read𝑓𝑓

52

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
alice.setup(log.write);
bob.setup(log.read);

What if Alice and Bob need more authority?
JS app

Alice Bob

write read𝑓𝑓

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
alice.setup(log.write);
bob.setup(log.read);

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 function size() { return messages.length(); }
 return harden({read, write, size});
}

let log = makeLog();
alice.setup(log.write, log.size);
bob.setup(log.read, log.size);

size
𝑓

53

If over time we want to expose more functionality to Alice and
Bob, we need to refactor all of our code.

Expose distinct authorities through facets
JS app

Alice Bob

writer reader

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 function size() { return messages.length(); }
 return harden({
 reader: {read, size},
 writer: {write, size}
 });
}

let log = makeLog();
alice.setup(log.writer);
bob.setup(log.reader);

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 function size() { return messages.length(); }
 return harden({read, write, size});
}

let log = makeLog();
alice.setup(log.write, log.size);
bob.setup(log.read, log.size);

54

Easily deconstruct the API of a single powerful object into
separate interfaces by nesting objects

Demo

55

https://github.com/tvcutsem/lavamoat-demo

End of Part II: recap

• Modern JS apps are composed from many
modules. You can’t trust them all.

• Traditional security boundaries don’t exist
between modules. Compartments add basic
isolation.

• Isolated modules must still interact!

• Compose functionality from untrusted modules
in a least-authority manner

• This can be done via repeatable programming
patterns that rely on object-capability security

56

JS app
Environment

Module Module

Shared resources

Part III
Safely composing modules using least-authority patterns

57

Design Patterns (“Gang of Four”, 1994)

58

• Visitor
• Factory
• Observer
• Singleton
• State
• …

Design Patterns for robust composition (Mark S. Miller, 2006)

59

http://www.erights.org/talks/thesis/markm-thesis.pdf

• Facets
• Taming
• Caretaker
• Membrane
• Sealer/unsealer pair
• …

Recall: the Principle of Least Authority (POLA)

•A module should only be given the authority it needs to do its job, and nothing more

60

JS app
Alice Bob

restricted	
API	access

Host resources

full	API	
access

Further limiting Bob’s authority

We would like to give Bob only temporary read
access to the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();

alice.setup(log.write);
bob.setup(log.read);

JS app
Alice Bob

write read𝑓𝑓

61

We would like to give Bob only temporary read
access to the log.

Use caretaker to insert access control logic

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
let [rlog, revoke] = makeRevokableLog(log);
alice.setup(log.write);
bob.setup(rlog.read);

JS app
Alice Bob

write

read

𝑓𝑓

𝑓

62

Use caretaker to insert access control logic

We would like to give Bob only temporary read
access to the log.

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
let [rlog, revoke] = makeRevokableLog(log);
alice.setup(log.write);
bob.setup(rlog.read);

// to revoke Bob’s access:
revoke();

JS app
Alice Bob

write

read

𝑓

𝑓

𝑓

63

Use caretaker to insert access control logic
JS app

Alice Bob

write

read

𝑓𝑓

𝑓

function makeRevokableLog(log) {
 function revoke() { log = null; };
 let proxy = {
 write(msg) { log.write(msg); }
 read() { return log.read(); }
 };
 return harden([proxy, revoke]);
}

64

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
let [rlog, revoke] = makeRevokableLog(log);
alice.setup(log.write);
bob.setup(rlog.read);

// to revoke Bob’s access:
revoke();

A caretaker is just a proxy object
JS app

Alice Bob

write

read

𝑓𝑓

𝑓

function makeRevokableLog(log) {
 function revoke() { log = null; };
 let proxy = {
 write(msg) { log.write(msg); }
 read() { return log.read(); }
 };
 return harden([proxy, revoke]);
}

65

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
let [rlog, revoke] = makeRevokableLog(log);
alice.setup(log.write);
bob.setup(rlog.read);

// to revoke Bob’s access:
revoke();

A caretaker is just a proxy object

import * as alice from "alice.js";
import * as bob from “bob.js";

function makeLog() {
 const messages = [];
 function write(msg) { messages.push(msg); }
 function read() { return [...messages]; }
 return harden({read, write});
}

let log = makeLog();
let [rlog, revoke] = makeRevokableLog(log);
alice.setup(log.write);
bob.setup(rlog.read);

// to revoke Bob’s access:
revoke();

function makeRevokableLog(log) {
 function revoke() { log = null; };
 let proxy = {
 write(msg) { log.write(msg); }
 read() { return log.read(); }
 };
 return harden([proxy, revoke]);
}

JS app
Alice Bob

write

read

𝑓

𝑓

𝑓

66

Taming is the process of restricting access to powerful APIs

• Expose powerful objects through restrictive proxies to third-party code

• E.g. Alice might give Bob read-only access to a specific subdirectory of her file system

JS app
Alice Bob

restricted	
API	access

Host resources

full	API	
access

67

Taming is the process of restricting access to powerful APIs

Potential hazard: the taming proxy must ensure it does not “leak” privileged
access to host resources through the tamed API (e.g. through return values)

68

JS app
Alice Bob

restricted	
API	access

Host resources

full	API	
access

Taming is the process of restricting access to powerful APIs

The solution is to transitively apply the proxy pattern to return values as
well. This pattern is called a “membrane”

Deep dive blog post at tvcutsem.github.io/membranes

69

JS app
Alice Bob

restricted	
API	access

Host resources

full	API	
access

http://tvcutsem.github.io/membranes

Least-authority patterns are used in industry

Example: how Google Caja uses taming to restrict access to the browser
DOM

70

(source: Google Caja documentation: https://developers.google.com/caja/docs/about)

Google Caja

https://developers.google.com/caja/docs/about

Least-authority patterns are used in industry

Moddable XS
Uses Compartments for safe end-user

scripting of IoT products
Uses Hardened JS to write
smart contracts and Dapps

Uses LavaMoat to sandbox plugins
in their crypto web wallet

MetaMask Snaps Agoric Zoe

71

Used Realms and membranes to
embed third-party plugins for their editor

Mozilla Firefox Salesforce Lightning
Uses membranes to isolate

site origins from privileged JS code

Figma plugins
Uses Realms and membranes to
isolate & observe UI components

Summary

72

This Lecture: Recap

• Part I: why module isolation is
critical to modern JavaScript
applications

• Part II: the Principle of Least
Authority, by example

• Part III: safely composing modules
using least-authority patterns

73

JS app

Alice Bob

log

Webpage
Browser env

Module Module

DOM Cookies

The take-away messages

•Modern applications are composed from many modules.

•You can’t trust them all (software supply chain attacks)

•Apply the “principle of least authority” to limit trust.

•Step 1: Isolate modules (Hardened JS & Lavamoat)

•Step 2: Use repeatable programming patterns to let
modules interact with “least authority”

•Understanding these patterns is important in a world of
> 2,000,000 NPM modules and an increasingly hostile
threat landscape

JS app
Environment

Module Module

Shared resources

74

75

“Security is just an extreme form of Modularity”

- Mark S. Miller
(Chief Scientist, Agoric)

Designing “least-authority” JavaScript apps
Tom Van Cutsem

KU Leuven

Questions?
tom.vancutsem@kuleuven.be

@tvcutsem.bsky.socialgithub.com/tvcutsemtvcutsem.github.io be.linkedin.com/in/tomvc @tvcutsem@techhub.social

mailto:tom.vancutsem@kuleuven.be
https://techhub.social/@tvcutsem
https://tvcutsem.github.io
https://bsky.app/profile/tvcutsem.bsky.social
https://be.linkedin.com/in/tomvc
https://github.com/tvcutsem

Further Reading
• JavaScript-specific tools and resources

• Hardened JavaScript: https://hardenedjs.org/

• Lavamoat: https://lavamoat.github.io/

• Compartments: https://github.com/tc39/proposal-compartments and https://github.com/
Agoric/ses-shim

• ShadowRealms: https://github.com/tc39/proposal-realms and github.com/Agoric/realms-shim

• Hardened JS (SES): https://github.com/tc39/proposal-ses and https://github.com/endojs/
endo/tree/master/packages/ses

• Subsetting ECMAScript: https://github.com/Agoric/Jessie

• Kris Kowal (Agoric): “Hardened JavaScript” https://www.youtube.com/watch?v=RoodZSIL-DE

• Making Javascript Safe and Secure: Talks by Mark S. Miller (Agoric), Peter Hoddie (Moddable),
and Dan Finlay (MetaMask): https://www.youtube.com/playlist?
list=PLzDw4TTug5O25J5M3fwErKImrjOrqGikj

• Moddable: XS: Secure, Private JavaScript for Embedded IoT: https://blog.moddable.com/blog/
secureprivate/

• Membranes in JavaScript: tvcutsem.github.io/js-membranes and tvcutsem.github.io/
membranes

• Caja: https://developers.google.com/caja (Capability-secure subset of JavaScript)

77

• General background on capability-based security and POLA

• Mark Miller, Ka-Ping Yee, Jonathan Shapiro, “Capability Myths
Demolished”: https://srl.cs.jhu.edu/pubs/SRL2003-02.pdf

• Chip Morningstar, “What are capabilities”: http://
habitatchronicles.com/2017/05/what-are-capabilities/ (broad
historical perspective)

• Thomas Leonard, “Lambda capabilities”: https://roscidus.com/
blog/blog/2023/04/26/lambda-capabilities/ (excellent intro to
capabilities for functional programmers)

• Why KeyKOS is fascinating: https://github.com/void4/notes/
issues/41 (sketches the early history of capabilities as used in
operating systems)

• Neil Madden, “Capability-Based Security and Macaroons” https://
freecontent.manning.com/capability-based-security-and-
macaroons/#id_ftn3 (capabilities in REST APIs)

https://hardenedjs.org/
https://lavamoat.github.io/
https://github.com/tc39/proposal-compartments
https://github.com/Agoric/ses-shim
https://github.com/Agoric/ses-shim
https://github.com/tc39/proposal-realms
http://github.com/Agoric/realms-shim
https://github.com/tc39/proposal-ses
https://github.com/endojs/endo/tree/master/packages/ses
https://github.com/endojs/endo/tree/master/packages/ses
https://github.com/Agoric/Jessie
https://www.youtube.com/watch?v=RoodZSIL-DE
https://www.youtube.com/playlist?list=PLzDw4TTug5O25J5M3fwErKImrjOrqGikj
https://www.youtube.com/playlist?list=PLzDw4TTug5O25J5M3fwErKImrjOrqGikj
https://blog.moddable.com/blog/secureprivate/
https://blog.moddable.com/blog/secureprivate/
http://tvcutsem.github.io/js-membranes
http://tvcutsem.github.io/membranes
http://tvcutsem.github.io/membranes
https://developers.google.com/caja
https://srl.cs.jhu.edu/pubs/SRL2003-02.pdf
http://habitatchronicles.com/2017/05/what-are-capabilities/
http://habitatchronicles.com/2017/05/what-are-capabilities/
https://roscidus.com/blog/blog/2023/04/26/lambda-capabilities/
https://roscidus.com/blog/blog/2023/04/26/lambda-capabilities/
https://roscidus.com/blog/blog/2023/04/26/lambda-capabilities/
https://github.com/void4/notes/issues/41
https://github.com/void4/notes/issues/41
https://freecontent.manning.com/capability-based-security-and-macaroons/#id_ftn3
https://freecontent.manning.com/capability-based-security-and-macaroons/#id_ftn3
https://freecontent.manning.com/capability-based-security-and-macaroons/#id_ftn3

Acknowledgements
• Mark S. Miller (for the inspiring and ground-breaking work on Object-capabilities, Robust Composition, E, Caja,

JavaScript and Secure ECMAScript)

• Marc Stiegler’s “PictureBook of secure cooperation” (2004) is a great source of inspiration for patterns of robust
composition

• Doug Crockford’s “JS: the Good Parts” and “How JS Works” books provide a highly opinionated take on how to write
clean, good, robust JavaScript code

• Kate Sills and Kris Kowal at Agoric for helpful comments on earlier versions of these slides

• The Cap-talk and Friam community for inspiration on capability-security and capability-secure design patterns

• TC39 and the es-discuss community, for the interactions during the design of ECMAScript 2015, and in particular all the
feedback on the Proxy API

• The SES secure coding guide: https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-
guide.md

• Dan Finlay and the Metamask team for their work on Lavamoat

78

https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md
https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md
https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md
https://github.com/endojs/endo/blob/master/packages/ses/docs/secure-coding-guide.md

